Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nat Methods ; 17(5): 505-508, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32371966

RESUMEN

Ligands bound to protein assemblies provide critical information for function, yet are often difficult to capture and define. Here we develop a top-down method, 'nativeomics', unifying 'omics' (lipidomics, proteomics, metabolomics) analysis with native mass spectrometry to identify ligands bound to membrane protein assemblies. By maintaining the link between proteins and ligands, we define the lipidome/metabolome in contact with membrane porins and a mitochondrial translocator to discover potential regulators of protein function.


Asunto(s)
Lípidos/análisis , Espectrometría de Masas/métodos , Proteínas de la Membrana/metabolismo , Metaboloma , Proteoma/análisis , Humanos , Ligandos
2.
Angew Chem Int Ed Engl ; 62(36): e202305694, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37329506

RESUMEN

Membrane proteins are challenging to analyze by native mass spectrometry (MS) as their hydrophobic nature typically requires stabilization in detergent micelles that are removed prior to analysis via collisional activation. There is however a practical limit to the amount of energy which can be applied, which often precludes subsequent characterization by top-down MS. To overcome this barrier, we have applied a modified Orbitrap Eclipse Tribrid mass spectrometer coupled to an infrared laser within a high-pressure linear ion trap. We show how tuning the intensity and time of incident photons enables liberation of membrane proteins from detergent micelles. Specifically, we relate the ease of micelle removal to the infrared absorption of detergents in both condensed and gas phases. Top-down MS via infrared multiphoton dissociation (IRMPD), results in good sequence coverage enabling unambiguous identification of membrane proteins and their complexes. By contrasting and comparing the fragmentation patterns of the ammonia channel with two class A GPCRs, we identify successive cleavage of adjacent amino acids within transmembrane domains. Using gas-phase molecular dynamics simulations, we show that areas prone to fragmentation maintain aspects of protein structure at increasing temperatures. Altogether, we propose a rationale to explain why and where in the protein fragment ions are generated.


Asunto(s)
Detergentes , Micelas , Espectrometría de Masas/métodos , Proteínas de la Membrana , Receptores Acoplados a Proteínas G
3.
Anal Chem ; 94(9): 3930-3938, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35189062

RESUMEN

Complete LC-MS-based protein primary sequence characterization requires measurement of intact protein profiles under denaturing and/or reducing conditions. To address issues of protein overcharging of unstructured proteins under acidic, denaturing conditions and sample heterogeneity (macro- and micro-scales) which often confound denaturing intact mass analysis of a wide variety of protein samples, we propose the use of broadband isolation of entire charge state distributions of intact proteins followed by ion-ion proton transfer charge reduction, which we have termed "full scan PTCR" (fsPTCR). Using rapid denaturing size exclusion chromatography coupled to fsPTCR-Orbitrap MS and time-resolved deconvolution data analysis, we demonstrate a strategy for method optimization, leading to significant analytical advantages over conventional MS1. Denaturing analysis of the flexible bacterial translation initiation factor 2 (91 kDa) using fsPTCR reduced overcharging and showed an 11-fold gain in S/N compared to conventional MS1. Analysis by fsPTCR-MS of the microheterogeneous glycoprotein fetuin revealed twice as many proteoforms as MS1 (112 vs 56). In a macroheterogeneous mixture of proteins ranging from 14 to 148 kDa, fsPTCR provided more than 10-fold increased sensitivity and quantitative accuracy for diluted bovine serum albumin (66 kDa). Finally, our analysis shows that collisional gas pressure is a key parameter which can be utilized during fsPTCR to retain or remove larger proteins from acquired spectra.


Asunto(s)
Protones , Albúmina Sérica Bovina , Secuencia de Aminoácidos , Cromatografía Liquida/métodos , Espectrometría de Masas , Albúmina Sérica Bovina/química
4.
Mol Cell Proteomics ; 19(2): 405-420, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31888965

RESUMEN

Top-down proteomics studies intact proteoform mixtures and offers important advantages over more common bottom-up proteomics technologies, as it avoids the protein inference problem. However, achieving complete molecular characterization of investigated proteoforms using existing technologies remains a fundamental challenge for top-down proteomics. Here, we benchmark the performance of ultraviolet photodissociation (UVPD) using 213 nm photons generated by a solid-state laser applied to the study of intact proteoforms from three organisms. Notably, the described UVPD setup applies multiple laser pulses to induce ion dissociation, and this feature can be used to optimize the fragmentation outcome based on the molecular weight of the analyzed biomolecule. When applied to complex proteoform mixtures in high-throughput top-down proteomics, 213 nm UVPD demonstrated a high degree of complementarity with the most employed fragmentation method in proteomics studies, higher-energy collisional dissociation (HCD). UVPD at 213 nm offered higher average proteoform sequence coverage and degree of proteoform characterization (including localization of post-translational modifications) than HCD. However, previous studies have shown limitations in applying database search strategies developed for HCD fragmentation to UVPD spectra which contains up to nine fragment ion types. We therefore performed an analysis of the different UVPD product ion type frequencies. From these data, we developed an ad hoc fragment matching strategy and determined the influence of each possible ion type on search outcomes. By paring down the number of ion types considered in high-throughput UVPD searches from all types down to the four most abundant, we were ultimately able to achieve deeper proteome characterization with UVPD. Lastly, our detailed product ion analysis also revealed UVPD cleavage propensities and determined the presence of a product ion produced specifically by 213 nm photons. All together, these observations could be used to better elucidate UVPD dissociation mechanisms and improve the utility of the technique for proteomic applications.


Asunto(s)
Proteómica/métodos , Rayos Ultravioleta , Animales , Anhidrasas Carbónicas , Células Cultivadas , Cromatografía Liquida , Fibroblastos , Proteínas Fúngicas , Humanos , Ratones , Miocitos Cardíacos , Mioglobina , Fotones , Pseudomonas aeruginosa , Espectrometría de Masas en Tándem , Ubiquitina
5.
Anal Chem ; 93(47): 15728-15735, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34788003

RESUMEN

Electron transfer dissociation (ETD) is an analytically useful tool for primary structure interrogation of intact proteins, but its utility is limited by higher-order reactions with the products. To inhibit these higher-order reactions, first-generation fragment ions are kinetically excited by applying an experimentally tailored parallel ion parking waveform during ETD (ETD-PIP). In combination with subsequent ion/ion proton transfer reactions, precursor-to-product conversion was maximized as evidenced by the consumption of more than 90% of the 21 kDa Protein G precursor to form ETD product ions. The employment of ETD-PIP increased sequence coverage to 90% from 80% with standard ETD. Additionally, the inhibition of sequential electron transfers was reflected in the high number of complementary ion pairs from ETD-PIP (90%) compared to standard ETD (39%).


Asunto(s)
Electrones , Proteínas , Transporte de Electrón , Iones , Análisis de Secuencia
6.
Anal Chem ; 92(1): 1041-1049, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31769661

RESUMEN

Ultraviolet photodissociation (UVPD) produces rich and informative fragmentation of intact protein ions, but in the case of high mass proteins (>30 kDa) the spectra are congested with overlapping isotope patterns of highly charged fragment ions. In the most congested regions, many fragments cannot be confidently identified even when high-resolution mass analyzers and modern deconvolution algorithms are used. Gas-phase ion-ion proton transfer reactions (PTR), which reduce the charge states of highly charged ions, can be used to alleviate this congestion and facilitate the identification of additional fragment ions when performed following UVPD. We have developed protocols for sequentially performing PTR on multiple populations of ions generated by UVPD in a way that can be tailored to balance the depth of characterization with speed and throughput. The improvements in sequence coverage and fragment identifications are demonstrated for four proteins ranging in size from 29 to 56 kDa. Sequence coverages up to 80% were achieved for carbonic anhydrase (29 kDa), 50% for aldolase (39 kDa), 46% for enolase (46 kDa), and 27% for glutamate dehydrogenase (56 kDa), and up to 74% sequence coverage was obtained for 25 kDa antibody drug conjugate subunits in online LC-MS experiments.


Asunto(s)
Enzimas/química , Inmunoconjugados/química , Protones , Secuencia de Aminoácidos , Animales , Bovinos , Cromatografía Liquida/métodos , Enzimas/efectos de la radiación , Inmunoconjugados/efectos de la radiación , Límite de Detección , Proteolisis/efectos de la radiación , Conejos , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/efectos de la radiación , Espectrometría de Masas en Tándem/métodos , Rayos Ultravioleta
7.
Anal Chem ; 91(24): 15732-15739, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31714757

RESUMEN

Despite the recent technological advances in Fourier transform mass spectrometry (FTMS) instrumentation, top-down proteomics (TDP) is currently mostly applied to the characterization of proteoforms <30 kDa due to the poor performance of high-resolution FTMS for the analysis of larger proteoforms and the high complexity of intact proteomes in the 30-60 kDa mass range. Here, we propose a novel data acquisition method based on ion-ion proton transfer, herein termed proton transfer charge reduction (PTCR), to investigate large proteoforms of Pseudomonas aeruginosa in a high-throughput fashion. We designed a targeted data acquisition strategy, named tPTCR, which applies two consecutive gas phase fractionation steps for obtaining intact precursor masses: first, a narrow (1.5 m/z-wide) quadrupole filter m/z transmission window is used to select a subset of charge states from all ionized proteoform cations; second, this aliquot of protein cations is subjected to PTCR in order to reduce their average charge state: upon m/z analysis in an Orbitrap, proteoform mass spectra with minimal m/z peak overlap and easy-to-interpret charge state distributions are obtained, simplifying the proteoform mass calculation. Subsequently, the same quadrupole-selected narrow m/z region of analytes is subjected to collisional dissociation to obtain proteoform sequence information, which used in combination with intact mass information leads to proteoform identification through an off-line database search. The newly proposed method was benchmarked against the previously developed "medium/high" data-dependent acquisition strategy and doubled the number of UniProt entries and proteoforms >30 kDa identified on the liquid chromatography time scale.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cromatografía Liquida/métodos , Proteoma/análisis , Protones , Pseudomonas aeruginosa/metabolismo , Programas Informáticos , Espectrometría de Masas en Tándem/métodos , Isoformas de Proteínas
8.
Anal Chem ; 90(14): 8583-8591, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29927232

RESUMEN

Ultraviolet photodissociation (UVPD) is a nonselective activation method in which both precursor and fragment ions may absorb photons and dissociate. Photoactivation of fragment ions may result in secondary or multiple generations of dissociation, which decreases the signal-to-noise ratio (S/N) of larger fragment ions owing to the prevalent subdivision of the ion current into many smaller, often less informative, fragment ions. Here we report the use of dipolar excitation waveforms to displace fragment ions out of the laser beam path, thus alleviating the extent of secondary dissociation during 193 nm UVPD. This fragment ion protection (FIP) strategy increases S/N of larger fragment ions and improves the sequence coverage obtained for proteins via retaining information deeper into the midsection of protein sequences.

9.
Anal Chem ; 90(14): 8421-8429, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29894161

RESUMEN

Targeted top-down (TD) and middle-down (MD) mass spectrometry (MS) offer reduced sample manipulation during protein analysis, limiting the risk of introducing artifactual modifications to better capture sequence information on the proteoforms present. This provides some advantages when characterizing biotherapeutic molecules such as monoclonal antibodies, particularly for the class of biosimilars. Here, we describe the results obtained analyzing a monoclonal IgG1, either in its ∼150 kDa intact form or after highly specific digestions yielding ∼25 and ∼50 kDa subunits, using an Orbitrap mass spectrometer on a liquid chromatography (LC) time scale with fragmentation from ion-photon, ion-ion, and ion-neutral interactions. Ultraviolet photodissociation (UVPD) used a new 213 nm solid-state laser. Alternatively, we applied high-capacity electron-transfer dissociation (ETD HD), alone or in combination with higher energy collisional dissociation (EThcD). Notably, we verify the degree of complementarity of these ion activation methods, with the combination of 213 nm UVPD and ETD HD producing a new record sequence coverage of ∼40% for TD MS experiments. The addition of EThcD for the >25 kDa products from MD strategies generated up to 90% of complete sequence information in six LC runs. Importantly, we determined an optimal signal-to-noise threshold for fragment ion deconvolution to suppress false positives yet maximize sequence coverage and implemented a systematic validation of this process using the new software TDValidator. This rigorous data analysis should elevate confidence for assignment of dense MS2 spectra and represents a purposeful step toward the application of TD and MD MS for deep sequencing of monoclonal antibodies.


Asunto(s)
Antineoplásicos Inmunológicos/química , Inmunoglobulina G/química , Espectrometría de Masas/métodos , Rituximab/química , Análisis de Secuencia de Proteína/métodos , Secuencia de Aminoácidos , Anticuerpos Monoclonales/química , Cromatografía Liquida/métodos , Iones/química
10.
Mol Cell Proteomics ; 15(3): 776-90, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26272979

RESUMEN

Histones, and their modifications, are critical components of cellular programming and epigenetic inheritance. Recently, cancer genome sequencing has uncovered driver mutations in chromatin modifying enzymes spurring high interest how such mutations change histone modification patterns. Here, we applied Top-Down mass spectrometry for the characterization of combinatorial modifications (i.e. methylation and acetylation) on full length histone H3 from human cell lines derived from multiple myeloma patients with overexpression of the histone methyltransferase MMSET as the result of a t(4;14) chromosomal translocation. Using the latest in Orbitrap-based technology for clean isolation of isobaric proteoforms containing up to 10 methylations and/or up to two acetylations, we provide extensive characterization of histone H3.1 and H3.3 proteoforms. Differential analysis of modifications by electron-based dissociation recapitulated antagonistic crosstalk between K27 and K36 methylation in H3.1, validating that full-length histone H3 (15 kDa) can be analyzed with site-specific assignments for multiple modifications. It also revealed K36 methylation in H3.3 was affected less by the overexpression of MMSET because of its higher methylation levels in control cells. The co-occurrence of acetylation with a minimum of three methyl groups in H3K9 and H3K27 suggested a hierarchy in the addition of certain modifications. Comparative analysis showed that high levels of MMSET in the myeloma-like cells drove the formation of hypermethyled proteoforms containing H3K36me2 co-existent with the repressive marks H3K9me2/3 and H3K27me2/3. Unique histone proteoforms with such "trivalent hypermethylation" (K9me2/3-K27me2/3-K36me2) were not discovered when H3.1 peptides were analyzed by Bottom-Up. Such disease-correlated proteoforms could link tightly to aberrant transcription programs driving cellular proliferation, and their precise description demonstrates that Top-Down mass spectrometry can now decode crosstalk involving up to three modified sites.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Espectrometría de Masas/métodos , Mieloma Múltiple/genética , Proteoma/metabolismo , Proteínas Represoras/genética , Línea Celular Tumoral , Epigénesis Genética , Humanos , Lisina/metabolismo , Metilación , Mieloma Múltiple/metabolismo , Regulación hacia Arriba
12.
Anal Chem ; 87(8): 4152-8, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25803405

RESUMEN

Top-down analysis of intact proteins by mass spectrometry provides an ideal platform for comprehensive proteoform characterization, in particular, for the identification and localization of post-translational modifications (PTM) co-occurring on a protein. One of the main bottlenecks in top-down proteomics is insufficient protein sequence coverage caused by incomplete protein fragmentation. Based on previous work on peptides, increasing sequence coverage and PTM localization by combining sequential ETD and HCD fragmentation in a single fragmentation event, we hypothesized that protein sequence coverage and phospho-proteoform characterization could be equally improved by this new dual fragmentation method termed EThcD, recently been made available on the Orbitrap Fusion. Here, we systematically benchmark the performance of several (hybrid) fragmentation methods for intact protein analysis on an Orbitrap Fusion, using as a model system a 17.5 kDa N-terminal fragment of the mitotic regulator Bora. During cell division Bora becomes multiply phosphorylated by a variety of cell cycle kinases, including Aurora A and Plk1, albeit at distinctive sites. Here, we monitor the phosphorylation of Bora by Aurora A and Plk1, analyzing the generated distinctive phospho-proteoforms by top-down fragmentation. We show that EThcD and ETciD on a Fusion are feasible and capable of providing richer fragmentation spectra compared to HCD or ETD alone, increasing protein sequence coverage, and thereby facilitating phosphosite localization and the determination of kinase specific phosphorylation sites in these phospho-proteoforms. Data are available via ProteomeXchange with identifier PXD001845.


Asunto(s)
Aurora Quinasa B/análisis , Proteómica , Aurora Quinasa B/metabolismo , Espectrometría de Masas , Fosforilación
13.
Nat Commun ; 15(1): 3259, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627419

RESUMEN

The heterogeneity inherent in today's biotherapeutics, especially as a result of heavy glycosylation, can affect a molecule's safety and efficacy. Characterizing this heterogeneity is crucial for drug development and quality assessment, but existing methods are limited in their ability to analyze intact glycoproteins or other heterogeneous biotherapeutics. Here, we present an approach to the molecular assessment of biotherapeutics that uses proton-transfer charge-reduction with gas-phase fractionation to analyze intact heterogeneous and/or glycosylated proteins by mass spectrometry. The method provides a detailed landscape of the intact molecular weights present in biotherapeutic protein preparations in a single experiment. For glycoproteins in particular, the method may offer insights into glycan composition when coupled with a suitable bioinformatic strategy. We tested the approach on various biotherapeutic molecules, including Fc-fusion, VHH-fusion, and peptide-bound MHC class II complexes to demonstrate efficacy in measuring the proteoform-level diversity of biotherapeutics. Notably, we inferred the glycoform distribution for hundreds of molecular weights for the eight-times glycosylated fusion drug IL22-Fc, enabling correlations between glycoform sub-populations and the drug's pharmacological properties. Our method is broadly applicable and provides a powerful tool to assess the molecular heterogeneity of emerging biotherapeutics.


Asunto(s)
Glicoproteínas , Polisacáridos , Glicosilación , Glicoproteínas/metabolismo , Espectrometría de Masas/métodos , Polisacáridos/metabolismo
14.
Anal Chem ; 85(17): 8385-90, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23909443

RESUMEN

Electron transfer dissociation (ETD), a technique that provides efficient fragmentation while depositing little energy into vibrational modes, has been widely integrated into proteomics workflows. Current implementations of this technique, as well as other ion-ion reactions like proton transfer, involve sophisticated hardware, lack robustness, and place severe design limitations on the instruments to which they are attached. Described herein is a novel, electrical discharge-based reagent ion source that is located in the first differentially pumped region of the mass spectrometer. The reagent source was found to produce intense reagent ion signals over extended periods of time while having no measurable impact on precursor ion signal. Further, the source is simple to construct and enables implementation of ETD on any instrument without modification to footprint. Finally, in the context of hybrid mass spectrometers, relocation of the reagent ion source to the front of the mass spectrometer enables new approaches to gas phase interrogation of intact proteins.


Asunto(s)
Transporte de Electrón , Espectrometría de Masa por Ionización de Electrospray/métodos , Iones
15.
Angew Chem Weinheim Bergstr Ger ; 135(36): e202305694, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-38516403

RESUMEN

Membrane proteins are challenging to analyze by native mass spectrometry (MS) as their hydrophobic nature typically requires stabilization in detergent micelles that are removed prior to analysis via collisional activation. There is however a practical limit to the amount of energy which can be applied, which often precludes subsequent characterization by top-down MS. To overcome this barrier, we have applied a modified Orbitrap Eclipse Tribrid mass spectrometer coupled to an infrared laser within a high-pressure linear ion trap. We show how tuning the intensity and time of incident photons enables liberation of membrane proteins from detergent micelles. Specifically, we relate the ease of micelle removal to the infrared absorption of detergents in both condensed and gas phases. Top-down MS via infrared multiphoton dissociation (IRMPD), results in good sequence coverage enabling unambiguous identification of membrane proteins and their complexes. By contrasting and comparing the fragmentation patterns of the ammonia channel with two class A GPCRs, we identify successive cleavage of adjacent amino acids within transmembrane domains. Using gas-phase molecular dynamics simulations, we show that areas prone to fragmentation maintain aspects of protein structure at increasing temperatures. Altogether, we propose a rationale to explain why and where in the protein fragment ions are generated.

16.
J Am Soc Mass Spectrom ; 32(9): 2334-2345, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33900069

RESUMEN

Obtaining extensive sequencing of an intact protein is essential in order to simultaneously determine both the nature and exact localization of chemical and genetic modifications which distinguish different proteoforms arising from the same gene. To effectively achieve such characterization, it is necessary to take advantage of the analytical potential offered by the top-down mass spectrometry approach to protein sequence analysis. However, as a protein increases in size, its gas-phase dissociation produces overlapping, low signal-to-noise fragments. The application of advanced ion dissociation techniques such as electron transfer dissociation (ETD) and ultraviolet photodissociation (UVPD) can improve the sequencing results compared to slow-heating techniques such as collisional dissociation; nonetheless, even ETD- and UVPD-based approaches have thus far fallen short in their capacity to reliably enable extensive sequencing of proteoforms ≥30 kDa. To overcome this issue, we have applied proton transfer charge reduction (PTCR) to limit signal overlap in tandem mass spectra (MS2) produced by ETD (alone or with supplemental ion activation, EThcD). Compared to conventional MS2 experiments, following ETD/EThcD MS2 with PTCR MS3 prior to m/z analysis of deprotonated product ions in the Orbitrap mass analyzer proved beneficial for the identification of additional large protein fragments (≥10 kDa), thus improving the overall sequencing and in particular the coverage of the central portion of all four analyzed proteins spanning from 29 to 56 kDa. Specifically, PTCR-based data acquisition led to 39% sequence coverage for the 56 kDa glutamate dehydrogenase, which was further increased to 44% by combining fragments obtained via HCD followed by PTCR MS3.

17.
Sci Rep ; 11(1): 18309, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526615

RESUMEN

Treatment of antibiotic-resistant infections is dependent on the detection of specific bacterial genes or proteins in clinical assays. Identification of methicillin-resistant Staphylococcus aureus (MRSA) is often accomplished through the detection of penicillin-binding protein 2a (PBP2a). With greater dependence on mass spectrometry (MS)-based bacterial identification, complementary efforts to detect resistance have been hindered by the complexity of those proteins responsible. Initial characterization of PBP2a indicates the presence of glycan modifications. To simplify detection, we demonstrate a proof-of-concept tandem MS approach involving the generation of N-terminal PBP2a peptide-like fragments and detection of unique product ions during top-down proteomic sample analyses. This approach was implemented for two PBP2a variants, PBP2amecA and PBP2amecC, and was accurate across a representative panel of MRSA strains with different genetic backgrounds. Additionally, PBP2amecA was successfully detected from clinical isolates using a five-minute liquid chromatographic separation and implementation of this MS detection strategy. Our results highlight the capability of direct MS-based resistance marker detection and potential advantages for implementing these approaches in clinical diagnostics.


Asunto(s)
Proteínas Bacterianas/genética , Staphylococcus aureus Resistente a Meticilina/clasificación , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Proteínas de Unión a las Penicilinas/genética , Infecciones Estafilocócicas/microbiología , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Técnicas de Tipificación Bacteriana , Humanos , Staphylococcus aureus Resistente a Meticilina/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo
20.
J Am Soc Mass Spectrom ; 28(9): 1787-1795, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28721671

RESUMEN

High resolution mass spectrometry is a key technology for in-depth protein characterization. High-field Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) enables high-level interrogation of intact proteins in the most detail to date. However, an appropriate complement of fragmentation technologies must be paired with FTMS to provide comprehensive sequence coverage, as well as characterization of sequence variants, and post-translational modifications. Here we describe the integration of front-end electron transfer dissociation (FETD) with a custom-built 21 tesla FT-ICR mass spectrometer, which yields unprecedented sequence coverage for proteins ranging from 2.8 to 29 kDa, without the need for extensive spectral averaging (e.g., ~60% sequence coverage for apo-myoglobin with four averaged acquisitions). The system is equipped with a multipole storage device separate from the ETD reaction device, which allows accumulation of multiple ETD fragment ion fills. Consequently, an optimally large product ion population is accumulated prior to transfer to the ICR cell for mass analysis, which improves mass spectral signal-to-noise ratio, dynamic range, and scan rate. We find a linear relationship between protein molecular weight and minimum number of ETD reaction fills to achieve optimum sequence coverage, thereby enabling more efficient use of instrument data acquisition time. Finally, real-time scaling of the number of ETD reactions fills during method-based acquisition is shown, and the implications for LC-MS/MS top-down analysis are discussed. Graphical Abstract ᅟ.


Asunto(s)
Espectrometría de Masas/métodos , Proteínas/análisis , Proteínas/química , Análisis de Secuencia de Proteína/métodos , Electrones , Diseño de Equipo , Análisis de Fourier , Espectrometría de Masas/instrumentación , Análisis de Secuencia de Proteína/instrumentación , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA