Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(41): 25560-25570, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32989144

RESUMEN

Deregulated global mRNA translation is an emerging feature of cancer cells. Oncogenic transformation in colorectal cancer (CRC) is driven by mutations in APC, KRAS, SMAD4, and TP53, known as the adenoma-carcinoma sequence (ACS). Here we introduce each of these driver mutations into intestinal organoids to show that they are modulators of global translational capacity in intestinal epithelial cells. Increased global translation resulting from loss of Apc expression was potentiated by the presence of oncogenic KrasG12D Knockdown of Smad4 further enhanced global translation efficiency and was associated with a lower 4E-BP1-to-eIF4E ratio. Quadruple mutant cells with additional P53 loss displayed the highest global translational capacity, paralleled by high proliferation and growth rates, indicating that the proteome is heavily geared toward cell division. Transcriptional reprogramming facilitating global translation included elevated ribogenesis and activation of mTORC1 signaling. Accordingly, interfering with the mTORC1/4E-BP/eIF4E axis inhibited the growth potential endowed by accumulation of multiple drivers. In conclusion, the ACS is characterized by a strongly altered global translational landscape in epithelial cells, exposing a therapeutic potential for direct targeting of the translational apparatus.


Asunto(s)
Adenoma/genética , Carcinoma/genética , Mutación/ética , Biosíntesis de Proteínas/genética , Adenoma/metabolismo , Animales , Carcinoma/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Células HEK293 , Humanos , Intestinos/citología , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Transgénicos , Organoides/metabolismo , Transducción de Señal , Técnicas de Cultivo de Tejidos
2.
EMBO Rep ; 21(4): e48938, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32052574

RESUMEN

Intestinal stem cells (ISCs) fuel the lifelong self-renewal of the intestinal tract and are paramount for epithelial repair. In this context, the Wnt pathway component LGR5 is the most consensual ISC marker to date. Still, the effort to better understand ISC identity and regulation remains a challenge. We have generated a Mex3a knockout mouse model and show that this RNA-binding protein is crucial for the maintenance of the Lgr5+ ISC pool, as its absence disrupts epithelial turnover during postnatal development and stereotypical organoid maturation ex vivo. Transcriptomic profiling of intestinal crypts reveals that Mex3a deletion induces the peroxisome proliferator-activated receptor (PPAR) pathway, along with a decrease in Wnt signalling and loss of the Lgr5+ stem cell signature. Furthermore, we identify PPARγ activity as a molecular intermediate of MEX3A-mediated regulation. We also show that high PPARγ signalling impairs Lgr5+ ISC function, thus uncovering a new layer of post-transcriptional regulation that critically contributes to intestinal homeostasis.


Asunto(s)
Mucosa Intestinal , Células Madre , Animales , Intestinos , Ratones , Organoides , Receptores Acoplados a Proteínas G/genética , Vía de Señalización Wnt
3.
EMBO Rep ; 20(2)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30530633

RESUMEN

During the suckling-to-weaning transition, the intestinal epithelium matures, allowing digestion of solid food. Transplantation experiments with rodent fetal epithelium into subcutaneous tissue of adult animals suggest that this transition is intrinsically programmed and occurs in the absence of dietary or hormonal signals. Here, we show that organoids derived from mouse primary fetal intestinal epithelial cells express markers of late fetal and neonatal development. In a stable culture medium, these fetal epithelium-derived organoids lose all markers of neonatal epithelium and start expressing hallmarks of adult epithelium in a time frame that mirrors epithelial maturation in vivoIn vitro postnatal development of the fetal-derived organoids accelerates by dexamethasone, a drug used to accelerate intestinal maturation in vivo Together, our data show that organoids derived from fetal epithelium undergo suckling-to-weaning transition, that the speed of maturation can be modulated, and that fetal organoids can be used to model the molecular mechanisms of postnatal epithelial maturation.


Asunto(s)
Mucosa Intestinal/citología , Intestinos/citología , Organoides , Animales , Diferenciación Celular , Biología Computacional/métodos , Células Epiteliales/citología , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Inmunohistoquímica , Ratones , Técnicas de Cultivo de Tejidos , Destete
4.
Proc Natl Acad Sci U S A ; 111(46): 16514-9, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25368192

RESUMEN

It recently has been recognized that men develop colonic adenomas and carcinomas at an earlier age and at a higher rate than women. In the Apc(Pirc/+) (Pirc) rat model of early colonic cancer, this sex susceptibility was recapitulated, with male Pirc rats developing twice as many adenomas as females. Analysis of large datasets revealed that the Apc(Min/+) mouse also shows enhanced male susceptibility to adenomagenesis, but only in the colon. In addition, WT mice treated with injections of the carcinogen azoxymethane (AOM) showed increased numbers of colonic adenomas in males. The mechanism underlying these observations was investigated by manipulation of hormonal status. The preponderance of colonic adenomas in the Pirc rat model allowed a statistically significant investigation in vivo of the mechanism of sex hormone action on the development of colonic adenomas. Females depleted of endogenous hormones by ovariectomy did not exhibit a change in prevalence of adenomas, nor was any effect observed with replacement of one or a combination of female hormones. In contrast, depletion of male hormones by orchidectomy (castration) markedly protected the Pirc rat from adenoma development, whereas supplementation with testosterone reversed that effect. These observations were recapitulated in the AOM mouse model. Androgen receptor was undetectable in the colon or adenomas, making it likely that testosterone acts indirectly on the tumor lineage. Our findings suggest that indirect tumor-promoting effects of testosterone likely explain the disparity between the sexes in the development of colonic adenomas.


Asunto(s)
Adenoma/epidemiología , Carcinógenos/toxicidad , Neoplasias del Colon/epidemiología , Dihidrotestosterona/toxicidad , Hormonas Esteroides Gonadales/fisiología , Neoplasias Hormono-Dependientes/epidemiología , Adenoma/inducido químicamente , Adenoma/fisiopatología , Adenoma/prevención & control , Poliposis Adenomatosa del Colon/epidemiología , Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/fisiopatología , Animales , Animales Congénicos , Azoximetano/toxicidad , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/fisiopatología , Neoplasias del Colon/prevención & control , Modelos Animales de Enfermedad , Estradiol/administración & dosificación , Estradiol/farmacología , Femenino , Genes APC , Terapia de Reemplazo de Hormonas , Humanos , Masculino , Acetato de Medroxiprogesterona/administración & dosificación , Acetato de Medroxiprogesterona/farmacología , Ratones , Ratones Endogámicos C57BL , Mutación , Neoplasias Hormono-Dependientes/fisiopatología , Neoplasias Hormono-Dependientes/prevención & control , Orquiectomía , Especificidad de Órganos , Ovariectomía , Posmenopausia , ARN Mensajero/análisis , Distribución Aleatoria , Ratas , Ratas Endogámicas F344 , Ratas Mutantes , Receptores Androgénicos/biosíntesis , Receptores Androgénicos/genética , Distribución por Sexo , Especificidad de la Especie
5.
Am J Physiol Gastrointest Liver Physiol ; 310(11): G1138-46, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27151945

RESUMEN

In the intestinal mucosa, retinoic acid (RA) is a critical signaling molecule. RA is derived from dietary vitamin A (retinol) through conversion by aldehyde dehydrogenases (aldh). Reduced levels of short-chain fatty acids (SCFAs) are associated with pathological microbial dysbiosis, inflammatory disease, and allergy. We hypothesized that SCFAs contribute to mucosal homeostasis by enhancing RA production in intestinal epithelia. With the use of human and mouse epithelial cell lines and primary enteroids, we studied the effect of SCFAs on the production of RA. Functional RA conversion was analyzed by Adlefluor activity assays. Butyrate (0-20 mM), in contrast to other SCFAs, dose dependently induced aldh1a1 or aldh1a3 transcript expression and increased RA conversion in human and mouse epithelial cells. Epithelial cell line data were replicated in intestinal organoids. In these organoids, butyrate (2-5 mM) upregulated aldh1a3 expression (36-fold over control), whereas aldh1a1 was not significantly affected. Butyrate enhanced maturation markers (Mucin-2 and villin) but did not consistently affect stemness markers or other Wnt target genes (lgr5, olfm4, ascl2, cdkn1). In enteroids, the stimulation of RA production by SCFA was mimicked by inhibitors of histone deacetylase 3 (HDAC3) but not by HDAC1/2 inhibitors nor by agonists of butyrate receptors G-protein-coupled receptor (GPR)43 or GPR109A, indicating that butyrate stimulates RA production via HDAC3 inhibition. We conclude that the SCFA butyrate inhibits HDAC3 and thereby supports epithelial RA production.


Asunto(s)
Butiratos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Mucosa Intestinal/efectos de los fármacos , Tretinoina/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Animales , Células CACO-2 , Células Cultivadas , Humanos , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Mucina 2/genética , Mucina 2/metabolismo
6.
Gastroenterology ; 148(1): 170-180.e6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25307863

RESUMEN

BACKGROUND & AIMS: Indian hedgehog (IHH) is an epithelial-derived signal in the intestinal stroma, inducing factors that restrict epithelial proliferation and suppress activation of the immune system. In addition to these rapid effects of IHH signaling, IHH is required to maintain a stromal phenotype in which myofibroblasts and smooth muscle cells predominate. We investigated the role of IHH signaling during development of intestinal neoplasia in mice. METHODS: Glioma-associated oncogene (Gli1)-CreERT2 and Patched (Ptch)-lacZ reporter mice were crossed with Apc(Min) mice to generate Gli1CreERT2-Rosa26-ZSGreen-Apc(Min) and Ptch-lacZ-Apc(Min) mice, which were used to identify hedgehog-responsive cells. Cyp1a1Cre-Apc (Apc(HET)) mice, which develop adenomas after administration of ß-naphthoflavone, were crossed with mice with conditional disruption of Ihh in the small intestine epithelium. Apc(Min) mice were crossed with mice in which sonic hedgehog (SHH) was overexpressed specifically in the intestinal epithelium. Intestinal tissues were collected and analyzed histologically and by immunohistochemistry and quantitative reverse-transcription polymerase chain reaction. We also analyzed levels of IHH messenger RNA and expression of IHH gene targets in intestinal tissues from patients with familial adenomatous polyposis (n = 18) or sessile serrated adenomas (n = 15) and normal colonic tissue from control patients (n = 12). RESULTS: Expression of IHH messenger RNA and its targets were increased in intestinal adenomas from patients and mice compared with control colon tissues. In mice, IHH signaling was exclusively paracrine, from the epithelium to the stroma. Loss of IHH from Apc(HET) mice almost completely blocked adenoma development, and overexpression of SHH increased the number and size of adenomas that developed. Loss of IHH from Apc(HET) mice changed the composition of the adenoma stroma; cells that expressed α-smooth muscle actin or desmin were lost, along with expression of cyclooxygenase-2, and the number of vimentin-positive cells increased. CONCLUSIONS: Apc mutant epithelial cells secrete IHH to maintain an intestinal stromal phenotype that is required for adenoma development in mice.


Asunto(s)
Adenoma/metabolismo , Biomarcadores de Tumor/metabolismo , Transformación Celular Neoplásica/metabolismo , Proteínas Hedgehog/metabolismo , Neoplasias Intestinales/metabolismo , Transducción de Señal , Células del Estroma/metabolismo , Adenoma/inducido químicamente , Adenoma/genética , Adenoma/patología , Poliposis Adenomatosa del Colon/metabolismo , Poliposis Adenomatosa del Colon/patología , Animales , Comunicación Autocrina , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Citocromo P-450 CYP1A1/genética , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Regulación Neoplásica de la Expresión Génica , Genes APC , Predisposición Genética a la Enfermedad , Proteínas Hedgehog/genética , Humanos , Hiperplasia , Integrasas/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Neoplasias Intestinales/inducido químicamente , Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Ratones Transgénicos , Mutación , Comunicación Paracrina , Fenotipo , ARN Mensajero/metabolismo , Células del Estroma/patología , Carga Tumoral , beta-naftoflavona
7.
Gut ; 64(2): 195-202, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24789843

RESUMEN

OBJECTIVE: Stress in the endoplasmic reticulum (ER) leads to activation of the unfolded protein response (UPR). Xbp1, a key component of the UPR has recently been linked to the risk of developing oesophageal squamous cell carcinoma, suggesting an important role for the UPR in the oesophageal epithelium. Here we examined the role of ER stress and the UPR in oesophageal epithelial homoeostasis. DESIGN: We examined the expression of components of the UPR in the oesophageal epithelium. We used a pharmacological approach and a genetic approach to examine the effects of ER stress in vivo in the mouse oesophagus. The oesophagus of these mice was examined using immunohistochemistry and real-time reverse transcription (RT)-PCR. RESULTS: Components of the UPR were heterogeneously expressed in the basal layer of the epithelium. Induction of ER stress by 24-h treatment with thapsigargin resulted in depletion of proliferating cells in the basal layer of the oesophagus and induced differentiation. We next activated the UPR by inducible deletion of the major ER chaperone Grp78 in Ah1Cre-Rosa26-LacZ-Grp78(-/-) mice in which mutant cells could be traced by expression of LacZ. In these mice LacZ-positive mutant cells in the basal layer lost their proliferative capacity, migrated towards the oesophageal lumen and were replaced by LacZ-negative non-mutant cells. We observed no apoptosis in mutant cells. CONCLUSIONS: These results show that ER stress induces epithelial differentiation in precursor cells in the oesophageal epithelium. This UPR induced differentiation may serve as a quality control mechanism that protects against oesophageal cancer development.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Esófago/citología , Animales , Apoptosis/fisiología , Diferenciación Celular/fisiología , Retículo Endoplásmico/ultraestructura , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Epiteliales/citología , Proteínas de Choque Térmico/deficiencia , Proteínas de Choque Térmico/fisiología , Homeostasis/fisiología , Lactonas/farmacología , Ratones Endogámicos C57BL , Sesquiterpenos/farmacología , Células Madre/citología , Respuesta de Proteína Desplegada/fisiología
8.
Am J Physiol Gastrointest Liver Physiol ; 309(4): G216-28, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26138464

RESUMEN

The esophagus is a relatively simple organ that evolved to transport food and liquids through the thoracic cavity. It is the only part of the gastrointestinal tract that lacks any metabolic, digestive, or absorptive function. The mucosa of the adult esophagus is covered by a multilayered squamous epithelium with a remarkable similarity to the epithelium of the skin despite the fact that these tissues originate from two different germ layers. Here we review the developmental pathways involved in the establishment of the esophagus and the way these pathways regulate gut-airway separation. We summarize current knowledge of the mechanisms that maintain homeostasis in esophageal epithelial renewal in the adult and the molecular mechanism of the development of Barrett's metaplasia, the precursor lesion to esophageal adenocarcinoma. Finally, we examine the ongoing debate on the hierarchy of esophageal epithelial precursor cells and on the presence or absence of a specific esophageal stem cell population. Together the recent insights into esophageal development and homeostasis suggest that the pathways that establish the esophagus during development also play a role in the maintenance of the adult epithelium. We are beginning to understand how reflux of gastric content and the resulting chronic inflammation can transform the squamous esophageal epithelium to columnar intestinal type metaplasia in Barrett's esophagus.


Asunto(s)
Epitelio/metabolismo , Enfermedades del Esófago/patología , Esófago/embriología , Homeostasis , Animales , Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Enfermedades del Esófago/metabolismo , Esófago/citología , Esófago/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Humanos
9.
Gut ; 63(2): 310-6, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23408349

RESUMEN

BACKGROUND: Hormone replacement therapy increases the risk of developing ulcerative colitis in postmenopausal women. Chronic intestinal inflammation predisposes to colon cancer development, but effects of female hormones on colitis-associated cancer development have not been examined. AIM: To investigate the role of female hormones in the dextran sodium sulfate (DSS)-azoxymethane (AOM) mouse model for colitis-associated cancer. DESIGN: We performed ovariectomies, or sham operations, on mice, and supplemented these animals with indicated hormones. Additionally, we used oestrogen receptor α or ß (Erα or Erß) mutant mice. To study colitis or colitis-associated cancer, we used DSS only, or DSS and AOM, respectively. RESULTS: Ovariectomy protects female mice against colitis-associated tumour development. Hormone replacement in ovariectomised mice with either oestradiol (E2), medroxyprogesterone acetate or a combination of both suggests that oestrogens are the ovary-derived factor that promotes tumour development in the context of inflammatory damage. E2-treated animals showed increased clinical symptoms and Il-6 production upon DSS-induced colitis and enhanced epithelial proliferation. Treatment with E2 markedly increased the numbers of polyps in ovariectomised mice and also strongly promoted tumour progression with all E2-treated animals developing at least one invasive adenocarcinoma, whereas, placebo-treated animals developed adenomas only. Using Er mutant mice, we find that the protumorigenic effect of oestrogen depends on both Erα and Erß. CONCLUSIONS: Our results suggest that oestrogens promote inflammation-associated cancer development by impairing the mucosal response to inflammatory damage.


Asunto(s)
Carcinogénesis/inducido químicamente , Colitis/inducido químicamente , Neoplasias del Colon/inducido químicamente , Modelos Animales de Enfermedad , Estradiol/efectos adversos , Estrógenos/efectos adversos , Medroxiprogesterona/efectos adversos , Animales , Azoximetano/toxicidad , Citocinas/metabolismo , Sulfato de Dextran/toxicidad , Femenino , Terapia de Reemplazo de Hormonas/efectos adversos , Inmunohistoquímica , Ratones , Ovariectomía
10.
Bio Protoc ; 14(5): e4947, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38464939

RESUMEN

The measurement of transepithelial electrical resistance across confluent cell monolayer systems is the most commonly used technique to study intestinal barrier development and integrity. Electric cell substrate impedance sensing (ECIS) is a real-time, label-free, impedance-based method used to study various cell behaviors such as cell growth, viability, migration, and barrier function in vitro. So far, the ECIS technology has exclusively been performed on cell lines. Organoids, however, are cultured from tissue-specific stem cells, which better recapitulate cell functions and the heterogeneity of the parent tissue than cell lines and are therefore more physiologically relevant for research and modeling of human diseases. In this protocol paper, we demonstrate that ECIS technology can be successfully applied on 2D monolayers generated from patient-derived intestinal organoids. Key features • We present a protocol that allows the assessment of various cell functions, such as proliferation and barrier formation, with ECIS on organoid-derived monolayers. • The protocol facilitates intestinal barrier research on patient tissue-derived organoids, providing a valuable tool for disease modeling.

11.
iScience ; 27(6): 109909, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38812539

RESUMEN

Small intestine (SI) maturation during early life is pivotal in preventing the onset of gut diseases. In this study we interrogated the milestones of SI development by gene expression profiling and ingenuity pathway analyses. We identified a set of cytokines as main regulators of changes observed across different developmental stages. Upon cytokines stimulation, with IFNγ as the most contributing factor, human fetal organoids (HFOs) increase brush border gene expression and enzyme activity as well as trans-epithelial electrical resistance. Electron microscopy revealed developed brush border and loss of fetal cell characteristics in HFOs upon cytokine stimulation. We identified T cells as major source of IFNγ production in the fetal SI lamina propria. Co-culture of HFOs with T cells recapitulated the major effects of cytokine stimulation. Our findings underline pro-inflammatory cytokines derived from T cells as pivotal factors inducing functional SI maturation in vivo and capable of modulating the barrier maturation of HFOs in vitro.

12.
Nature ; 446(7136): 676-9, 2007 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-17377531

RESUMEN

The APC gene encodes the adenomatous polyposis coli tumour suppressor protein, germline mutation of which characterizes familial adenomatous polyposis (FAP), an autosomal intestinal cancer syndrome. Inactivation of APC is also recognized as the key early event in the development of sporadic colorectal cancers, and its loss results in constitutive activity of the beta-catenin-Tcf4 transcription complex. The proto-oncogene c-MYC has been identified as a target of the Wnt pathway in colorectal cancer cells in vitro, in normal crypts in vivo and in intestinal epithelial cells acutely transformed on in vivo deletion of the APC gene; however, the significance of this is unclear. Therefore, to elucidate the role Myc has in the intestine after Apc loss, we have simultaneously deleted both Apc and Myc in the adult murine small intestine. Here we show that loss of Myc rescued the phenotypes of perturbed differentiation, migration, proliferation and apoptosis, which occur on deletion of Apc. Remarkably, this rescue occurred in the presence of high levels of nuclear beta-catenin. Array analysis revealed that Myc is required for the majority of Wnt target gene activation following Apc loss. These data establish Myc as the critical mediator of the early stages of neoplasia following Apc loss.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/deficiencia , Proteína de la Poliposis Adenomatosa del Colon/genética , Eliminación de Gen , Genes APC , Genes myc/genética , Intestino Delgado/metabolismo , Proteínas Proto-Oncogénicas c-myc/deficiencia , Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/patología , Animales , Enterocitos/metabolismo , Intestino Delgado/citología , Masculino , Ratones , Fenotipo , Proteínas Proto-Oncogénicas c-myc/genética
13.
Gut ; 61(12): 1708-15, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22187071

RESUMEN

BACKGROUND: 5-Aminosalicylic acid (5-ASA) may protect against the development of inflammation-associated colorectal cancer. In vitro data suggest that, in colorectal cancer cells, 5-ASA induces cell cycle arrest, but the molecular mechanism leading to this arrest remains to be determined. AIM: To dissect the signal transduction events that lead to 5-ASA mediated inhibition of proliferation of colorectal cancer cells, focusing on mammalian target of rapamycin (mTOR), a regulator of cell cycle progression. METHODS: The influence of 5-ASA on mTOR signalling was examined in a panel of colorectal cancer cell lines. The effects of 5-ASA on the pathways that control mTOR activity were studied in detail in two different colorectal cancer cell lines, using western blot, siRNA, a phospholipase D (PLD) activity assay, proliferation assays and cell cycle analysis. The phosphorylation status of mTOR and its downstream target, ribosomal protein S6, was studied in colorectal cancers before and after topical 5-ASA treatment. RESULTS: Treatment of colorectal cancer with 5-ASA inhibited mTOR signalling in vitro and in vivo. 5-ASA had no effect on any of the pathways that regulate the activity of the tuberous sclerosis complex in colorectal cancer cells. Both proliferation and mTOR activity depended on PLD, an enzyme that generates phosphatidic acid (PA). 5-ASA treatment inhibited PLD activity and proliferation; these effects could be rescued with exogenous PA. CONCLUSION: 5-ASA interferes with proliferation of colorectal cancer cells via inhibition of PLD-dependent generation of PA and loss of mTOR signalling.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Mesalamina/farmacología , Fosfolipasa D/metabolismo , Transducción de Señal/efectos de los fármacos , Antiinflamatorios no Esteroideos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Western Blotting , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Humanos , Mesalamina/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo
14.
Emerg Microbes Infect ; 12(1): 2195020, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36951188

RESUMEN

SARS-CoV-2, the causative virus of COVID-19, continues to threaten global public health. COVID-19 is a multi-organ disease, causing not only respiratory distress, but also extrapulmonary manifestations, including gastrointestinal symptoms with SARS-CoV-2 RNA shedding in stool long after respiratory clearance. Despite global vaccination and existing antiviral treatments, variants of concern are still emerging and circulating. Of note, new Omicron BA.5 sublineages both increasingly evade neutralizing antibodies and demonstrate an increased preference for entry via the endocytic entry route. Alternative to direct-acting antivirals, host-directed therapies interfere with host mechanisms hijacked by viruses, and enhance cell-mediated resistance with a reduced likelihood of drug resistance development. Here, we demonstrate that the autophagy-blocking therapeutic berbamine dihydrochloride robustly prevents SARS-CoV-2 acquisition by human intestinal epithelial cells via an autophagy-mediated BNIP3 mechanism. Strikingly, berbamine dihydrochloride exhibited pan-antiviral activity against Omicron subvariants BA.2 and BA.5 at nanomolar potency, providing a proof of concept for the potential for targeting autophagy machinery to thwart infection of current circulating SARS-CoV-2 subvariants. Furthermore, we show that autophagy-blocking therapies limited virus-induced damage to intestinal barrier function, affirming the therapeutic relevance of autophagy manipulation to avert the intestinal permeability associated with acute COVID-19 and post-COVID-19 syndrome. Our findings underscore that SARS-CoV-2 exploits host autophagy machinery for intestinal dissemination and indicate that repurposed autophagy-based antivirals represent a pertinent therapeutic option to boost protection and ameliorate disease pathogenesis against current and future SARS-CoV-2 variants of concern.


Asunto(s)
COVID-19 , Hepatitis C Crónica , Humanos , SARS-CoV-2 , Antivirales/farmacología , Síndrome Post Agudo de COVID-19 , ARN Viral , Anticuerpos Neutralizantes , Autofagia , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus , Proteínas de la Membrana
15.
Front Microbiol ; 14: 1045587, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37138595

RESUMEN

Enterovirus A71 (EV-A71) can elicit a wide variety of human diseases such as hand, foot, and mouth disease and severe or fatal neurological complications. It is not clearly understood what determines the virulence and fitness of EV-A71. It has been observed that amino acid changes in the receptor binding protein, VP1, resulting in viral binding to heparan sulfate proteoglycans (HSPGs) may be important for the ability of EV-A71 to infect neuronal tissue. In this study, we identified that the presence of glutamine, as opposed to glutamic acid, at VP1-145 is key for viral infection in a 2D human fetal intestinal model, consistent with previous findings in an airway organoid model. Moreover, pre-treatment of EV-A71 particles with low molecular weight heparin to block HSPG-binding significantly reduced the infectivity of two clinical EV-A71 isolates and viral mutants carrying glutamine at VP1-145. Our data indicates that mutations in VP1 leading to HSPG-binding enhances viral replication in the human gut. These mutations resulting in increased production of viral particles at the primary replication site could lead to a higher risk of subsequent neuroinfection. Importance: With the near eradication of polio worldwide, polio-like illness (as is increasingly caused by EV-A71 infections) is of emerging concern. EV-A71 is indeed the most neurotropic enterovirus that poses a major threat globally to public health and specifically in infants and young children. Our findings will contribute to the understanding of the virulence and the pathogenicity of this virus. Further, our data also supports the identification of potential therapeutic targets against severe EV-A71 infection especially among infants and young children. Furthermore, our work highlights the key role of HSPG-binding mutations in the disease outcome of EV-A71. Additionally, EV-A71 is not able to infect the gut (the primary replication site in humans) in traditionally used animal models. Thus, our research highlights the need for human-based models to study human viral infections.Graphical Abstract.

16.
Life Sci Alliance ; 6(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37643866

RESUMEN

In development of colorectal cancer, mutations in APC are often followed by mutations in oncogene KRAS The latter changes cellular metabolism and is associated with the Warburg phenomenon. Glucose-regulated protein 78 (Grp78) is an important regulator of the protein-folding machinery, involved in processing and localization of transmembrane proteins. We hypothesize that targeting Grp78 in Apc and Kras (AK)-mutant intestines interferes with the metabolic phenotype imposed by Kras mutations. In mice with intestinal epithelial mutations in Apc, Kras G12D and heterozygosity for Grp78 (AK-Grp78 HET ) adenoma number and size is decreased compared with AK-Grp78 WT mice. Organoids from AK-Grp78 WT mice exhibited a glycolysis metabolism which was completely rescued by Grp78 heterozygosity. Expression and correct localization of glucose transporter GLUT1 was diminished in AK-Grp78 HET cells. GLUT1 inhibition restrained the increased growth observed in AK-mutant organoids, whereas AK-Grp78 HET organoids were unaffected. We identify Grp78 as a critical factor in Kras-mutated adenomagenesis. This can be attributed to a critical role for Grp78 in GLUT1 expression and localization, targeting glycolysis and the Warburg effect.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Animales , Ratones , Proliferación Celular , Glucosa , Transportador de Glucosa de Tipo 1/genética , Glucólisis/genética , Intestinos , Proteínas Proto-Oncogénicas p21(ras)/genética
17.
Antibiotics (Basel) ; 11(2)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35203869

RESUMEN

The association between prolonged antibiotic (AB) use in neonates and increased incidence of later life diseases is not yet fully understood. AB treatment in early life alters intestinal epithelial cell composition, functioning, and maturation, which could be the basis for later life health effects. Here, we investigated whether AB-induced changes in the neonatal gut persisted up to adulthood and whether early life AB had additional long-term consequences for gut functioning. Mice received AB orally from postnatal day 10 to 20. Intestinal morphology, permeability, and gene and protein expression at 8 weeks were analyzed. Our data showed that the majority of the early life AB-induced gut effects did not persist into adulthood, yet early life AB did impact later life gut functioning. Specifically, the proximal small intestine (SI) of adult mice treated with AB in early life was characterized by hyperproliferative crypts, increased number of Paneth cells, and alterations in enteroendocrine cell-specific gene expression profiles. The distal SI of adult mice displayed a reduced expression of antibacterial defense markers. Together, our results suggest that early life AB leads to structural and physiological changes in the adult gut, which may contribute to disease development when homeostatic conditions are under challenge.

18.
JHEP Rep ; 4(5): 100463, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35462858

RESUMEN

Background & Aims: Organic solute transporter (OST) subunits OSTα and OSTß facilitate bile acid efflux from the enterocyte into the portal circulation. Patients with deficiency of OSTα or OSTß display considerable variation in the level of bile acid malabsorption, chronic diarrhea, and signs of cholestasis. Herein, we generated and characterized a mouse model of OSTß deficiency. Methods: Ostß -/- mice were generated using CRISR/Cas9 and compared to wild-type and Ostα -/- mice. OSTß was re-expressed in livers of Ostß -/- mice using adeno-associated virus serotype 8 vectors. Cholestasis was induced in both models by bile duct ligation (BDL) or 3.5-diethoxycarbonyl-1.4-dihydrocollidine (DDC) feeding. Results: Similar to Ostα -/- mice, Ostß -/- mice exhibited elongated small intestines with blunted villi and increased crypt depth. Increased expression levels of ileal Fgf15, and decreased Asbt expression in Ostß -/- mice indicate the accumulation of bile acids in the enterocyte. In contrast to Ostα -/- mice, induction of cholestasis in Ostß -/- mice by BDL or DDC diet led to lower survival rates and severe body weight loss, but an improved liver phenotype. Restoration of hepatic Ostß expression via adeno-associated virus-mediated overexpression did not rescue the phenotype of Ostß -/- mice. Conclusions: OSTß is pivotal for bile acid transport in the ileum and its deficiency leads to an intestinal phenotype similar to Ostα -/- mice, but it exerts distinct effects on survival and the liver phenotype, independent of its expression in the liver. Our findings provide insights into the variable clinical presentation of patients with OSTα and OSTß deficiencies. Lay summary: Organic solute transporter (OST) subunits OSTα and OSTß together facilitate the efflux of conjugated bile acids into the portal circulation. Ostα knockout mice have longer and thicker small intestines and are largely protected against experimental cholestatic liver injury. Herein, we generated and characterized Ostß knockout mice for the first time. Ostα and Ostß knockout mice shared a similar phenotype under normal conditions. However, in cholestasis, Ostß knockout mice had a worsened overall phenotype which indicates a separate and specific role of OSTß, possibly as an interacting partner of other intestinal proteins.

19.
Life Sci Alliance ; 5(12)2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35926873

RESUMEN

Human milk is important for antimicrobial defense in infants and has well demonstrated antiviral activity. We evaluated the protective ability of human milk against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in a human fetal intestinal cell culture model. We found that, in this model, human milk blocks SARS-CoV-2 replication, irrespective of the presence of SARS-CoV-2 spike-specific antibodies. Complete inhibition of both enveloped Middle East respiratory syndrome coronavirus and human respiratory syncytial virus infections was also observed, whereas no inhibition of non-enveloped enterovirus A71 infection was seen. Transcriptome analysis after 24 h of the intestinal monolayers treated with human milk showed large transcriptomic changes from human milk treatment, and subsequent analysis suggested that <i>ATP1A1</i> down-regulation by milk might be of importance. Inhibition of ATP1A1 blocked SARS-CoV-2 infection in our intestinal model, whereas no effect on EV-A71 infection was seen. Our data indicate that human milk has potent antiviral activity against particular (enveloped) viruses by potentially blocking the ATP1A1-mediated endocytic process.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Antivirales/farmacología , Humanos , Leche Humana
20.
Proc Natl Acad Sci U S A ; 105(48): 18919-23, 2008 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-19033191

RESUMEN

Dysregulated Wnt signaling is seen in approximately 30% of hepatocellular carcinomas; thus, finding pathways downstream of the activation of Wnt signaling is key. Here, using cre-lox technology, we deleted the Apc gene in the adult mouse liver and observed a rapid increase in nuclear beta-catenin and c-Myc, which is associated with an induction of proliferation that led to hepatomegaly within 4 days of gene deletion. To investigate the downstream pathways responsible for these phenotypes, we analyzed the impact of inactivating APC in the context of deficiency of the potentially key effectors beta-catenin and c-Myc. beta-catenin loss rescues both the proliferation and hepatomegaly phenotypes after APC loss. However, c-Myc deletion, which rescues the phenotypes of APC loss in the intestine, had no effect on the phenotypes of APC loss in the liver. The consequences of the deregulation of the Wnt pathway within the liver are therefore strikingly different from those observed within the intestine, with the vast majority of Wnt targets being beta-catenin-dependent but c-Myc-independent in the liver.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Hígado/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal/fisiología , Proteínas Wnt/metabolismo , beta Catenina/deficiencia , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Eliminación de Gen , Hígado/citología , Hígado/patología , Masculino , Ratones , Ratones Transgénicos , Análisis por Micromatrices , Fenotipo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Wnt/genética , beta Catenina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA