Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Environ Sci Technol ; 53(15): 9192-9202, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31276616

RESUMEN

Recent contaminant monitoring in boreal wetlands situated in Alberta's Athabasca oil sands region revealed increased concentrations of polycyclic aromatic compounds (PACs) in passive sampling devices deployed in wetlands close to bitumen surface mining operations. In this study, graded concentrations of semipermeable membrane device (SPMD) extracts, collected from 4 wetlands with variable burdens of PACs, were administered to chicken and double-crested cormorant (DCCO) embryonic hepatocytes to determine effects on 7-ethoxyresorufin-O-deethylase (EROD) activity and mRNA expression. Concentrations and composition of PACs detected in SPMDs varied among sites, and the proportion of alkyl PACs was greater than parent compounds at all sites. ΣPACs was the highest in SPMDs deployed within 10 km of mining activity (near-site wetland [5930 ng SPMD-1]) compared to those ∼50 km south (far-site wetland [689 ng SPMD-1]). Measures of EROD activity and Cyp1a4 mRNA expression allowed the ranking of wetland sites based on aryl hydrocarbon receptor-mediated end points; EROD activity and Cyp1a4 mRNA induction were the highest at the near-site wetland. ToxChip PCR arrays (one chicken and one DCCO) provided a more exhaustive transcriptomic evaluation across multiple toxicological pathways following exposure to the SPMD extracts. Study sites with the greatest PAC concentrations had the most genes altered on the chicken ToxChip (12-15/43 genes). Exposure of avian hepatocytes to SPMD extracts from variably contaminated wetlands highlighted traditional PAC-related toxicity pathways as well as other novel mechanisms of action. A novel combination of passive sampling techniques and high-throughput toxicity evaluation techniques shows promise in terms of identifying hotspots of chemical concern in the natural environment.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Humedales , Alberta , Animales , Monitoreo del Ambiente , Hepatocitos , Yacimiento de Petróleo y Gas , Extractos Vegetales , Transcriptoma
2.
Toxicol Appl Pharmacol ; 266(1): 38-47, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23142756

RESUMEN

Avian-specific toxic equivalency factors (TEFs) were developed by the World Health Organization to simplify environmental risk assessments of dioxin-like compounds (DLCs), but TEFs do not account for differences in the toxic and biochemical potencies of DLCs among species of birds. Such variability may be due to differences in species sensitivity to individual DLCs. The sensitivity of avian species to DLCs was recently associated with the identity of amino acids 324 and 380 in the aryl hydrocarbon receptor 1 (AHR1) ligand binding domain. A luciferase reporter gene (LRG) assay, measuring AHR1-mediated induction of a cytochrome P450 1A5 (CYP1A5) reporter gene, in combination with a species' AHR1 ligand binding domain sequence, were also shown to predict avian species sensitivity to polychlorinated biphenyls (PCBs) and PCB relative potency in a given species. The goals of the present study were to (1) characterize the concentration-dependent effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and PCBs 126, 77, 105 and 118 on induction of ethoxyresorufin O-deethylase (EROD) activity and CYP1A4/5 mRNA in chicken, ring-necked pheasant and Japanese quail embryo hepatocytes and (2) compare these in vitro results to those previously generated by the LRG assay and in ovo toxicity studies. EROD activity and CYP1A4/5 mRNA expression data support and complement the findings of the LRG assay. CYP1A enzyme activity and mRNA expression were significantly correlated both with luciferase activity and in ovo toxicity induced by PCBs. Relative potency values were generally similar between the LRG and EROD assays and indicate that the relative potency of some PCBs may differ among species.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Genes Reporteros/fisiología , Hepatocitos/metabolismo , Bifenilos Policlorados/toxicidad , Receptores de Hidrocarburo de Aril/fisiología , Animales , Aves , Células Cultivadas , Pollos , Coturnix , Inducción Enzimática/efectos de los fármacos , Inducción Enzimática/fisiología , Genes Reporteros/efectos de los fármacos , Hepatocitos/efectos de los fármacos
3.
Ecotoxicology ; 22(4): 731-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23519780

RESUMEN

Novel methods that predict the sensitivity of avian embryos to the toxic effects of dioxin-like compounds (DLCs) using either (1) knowledge of the identity of amino acids at key sites within the ligand binding domain of aryl hydrocarbon receptor 1 (AHR1) or (2) a luciferase reporter gene assay that measures AHR1 activation were recently reported. Results from both methods predict that European starling (Sturnus vulgaris) and domestic chicken (Gallus gallus domesticus) embryos have similar sensitivity to the biochemical and toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) and 2,3,7,8-tetrachlorodibenzofuran (TCDF). Chicken embryos are highly sensitive to DLC toxicity, and the prediction that starlings are equally sensitive is surprising given their widespread distribution and large population size. In an attempt to learn more about starling sensitivity to DLCs, we determined concentration-dependent effects of TCDD, PeCDF and TCDF on cytochrome P4501A4 and 1A5 (CYP1A4 and 1A5) mRNA levels in primary cultures of hepatocytes prepared from embryonic European starlings. It has been demonstrated that the sensitivity of avian hepatocytes to CYP1A4/5 induction is well correlated with LD50 values of DLCs for several avian species. The results of the present study indicate that European starling hepatocytes are indeed as sensitive as chicken hepatocytes to CYP1A4/5 induction after exposure to TCDD. However, starling hepatocytes are less sensitive than chicken hepatocytes to CYP1A4/5 induction by PeCDF and TCDF.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/metabolismo , Benzofuranos/toxicidad , Hepatocitos/efectos de los fármacos , Dibenzodioxinas Policloradas/toxicidad , Estorninos/embriología , Animales , Hidrocarburo de Aril Hidroxilasas/genética , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Supervivencia Celular , Células Cultivadas , Embrión de Pollo , Pollos , Genes Reporteros , Hepatocitos/metabolismo , Dosificación Letal Mediana , Luciferasas/genética , Luciferasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Medición de Riesgo
4.
Environ Pollut ; 333: 122061, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37330190

RESUMEN

The Athabasca oil sands region (AOSR) of Alberta, Canada is notable for its considerable unconventional petroleum extraction projects, where bitumen is extracted from naturally-occurring oil sands ore. The large scale of these heavy crude oil developments raises concerns because of their potential to distribute and/or otherwise influence the occurrence, behaviour, and fate of environmental contaminants. Naphthenic acids (NAs) are one such contaminant class of concern in the AOSR, so studies have examined the occurrence and molecular profiles of NAs in the region. We catalogued the spatiotemporal occurrence and characteristics of NAs in boreal wetlands in the AOSR over a 7-year period, using derivatized liquid chromatography-tandem mass spectrometry (LC-MS/MS). Comparing median concentrations of NAs across these wetlands revealed a pattern of NAs suggesting NAs in surface waters derived from oil sands deposits. Opportunistic wetlands that formed adjacent to reclaimed overburden and other reclamation activities had the highest concentrations of NAs and consistent patterns suggestive of bitumen-derived inputs. However, similar patterns in the occurrence of NAs were also observed in undeveloped natural wetlands located above the known surface-mineable oil sands deposit that underlies the region. Intra-annual sampling results along with inter-annual comparisons across wetlands demonstrated that differences in the spatial and temporal NA concentrations were dependent on local factors, particularly when naturally occurring oil sands ores were observed in the wetland or drainage catchment.


Asunto(s)
Petróleo , Contaminantes Químicos del Agua , Alberta , Yacimiento de Petróleo y Gas , Humedales , Cromatografía Liquida , Espectrometría de Masas en Tándem , Petróleo/análisis , Ácidos Carboxílicos/análisis , Contaminantes Químicos del Agua/análisis
5.
Sci Total Environ ; 806(Pt 2): 150619, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34592289

RESUMEN

Bitumen is extracted from oil sands in the Athabasca Oil Sands region (AOSR) of Alberta, Canada. Much of the bitumen-derived toxicity in mine waste is attributable to naphthenic acid fraction compounds (NAFCs). Mines in the AOSR are required to be returned to a natural state after closure; thus, cost-effective strategies are needed to reduce toxicity from NAFCs. Previous studies have demonstrated the capability of constructed wetlands to attenuate NAFCs. However, the capacity of wetlands in the natural environment to degrade and transform NAFCs to less toxic components is poorly understood. To better understand the spatial distribution and fate of NAFCs in natural wetlands, samples were collected across the surfaces of two mature opportunistic wetlands near active oil sands mines. The first wetland has a well-defined surface flow pathway and inflows affected by overburden containing lean bitumen ore. The second wetland, in contrast, is a stagnant water body with raw bitumen visible along its edges. For the wetland with a well defined flow path, NAFCs decreased in concentration down gradient, while oxidized NAFCs constituted a greater proportion of NAFCs with increase in flow path. Likewise there was a decrease in the molecular weights of NAFCs, similar to trends observed in constructed wetland treatment systems. In comparison, NAFCs were more uniformly distributed across the relatively stagnant wetland. Overall, these data provide new evidence that mature opportunistic wetlands in the AOSR can promote the degradation and oxidation of bitumen-derived naphthenic acids into less toxic compounds.


Asunto(s)
Contaminantes Químicos del Agua , Humedales , Alberta , Ácidos Carboxílicos , Hidrocarburos , Yacimiento de Petróleo y Gas , Contaminantes Químicos del Agua/análisis
6.
Environ Pollut ; 270: 116060, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33341299

RESUMEN

We examined polycyclic aromatic compounds (PACs) and petroleum biomarkers (steranes, hopanes, and terpanes) in radiometrically-dated lake sediment cores from the Athabasca oil sands region (AOSR) and the Peace-Athabasca Delta (PAD) region in Alberta (Canada) to determine whether contributions from petroleum hydrocarbons have changed over time. Two floodplain lakes in the PAD (PAD 30, PAD 31) recorded increased flux of alkylated PACs and increased petrogenic (petroleum-derived) hydrocarbons after ∼1980, coincident with a decline of sediment organic carbon content and a rise of bulk sedimentation rate, likely due to increased Athabasca River flow. A large expansion of upstream oilsands mining, upgrading, and refining may also have contributed to the observed shift to more petrogenic hydrocarbons to sediments since the 1980s. Alkylated PAC flux increased in the floodplain lake analyzed within the AOSR (Saline Lake) since the 1970s-1980s, coincident with a sharp rise in sediment organic carbon content and increased contributions of petrogenic hydrocarbons. These changes identify increased supply of petrogenic PACs occurred as Athabasca River floodwaters waned, and may implicate aerial contributions of petrogenic hydrocarbons from oilsands activity. PACs and petroleum biomarkers (steranes, hopanes, and terpanes) in sediment cores from Saline Lake, PAD 30 and PAD 31 revealed a predominance of petrogenic hydrocarbons in these lakes. In contrast, we recorded minimal petrogenic hydrocarbons in the reference lakes outside the surface minable area of the AOSR and PAD (Mariana Lake and BM11), though we noted slight increases in petrogenic contributions to modern (2010-2016) sediments. We show how a combined analysis of PACs and petroleum biomarkers in sediments is useful to quantify petrogenic contributions to lakes with added confidence and highlight the potential for petroleum biomarkers in lake sediment cores as a novel and effective method to track petroleum hydrocarbons in lake sediment.


Asunto(s)
Petróleo , Hidrocarburos Policíclicos Aromáticos , Compuestos Policíclicos , Contaminantes Químicos del Agua , Alberta , Biomarcadores , Monitoreo del Ambiente , Sedimentos Geológicos , Lagos/análisis , Yacimiento de Petróleo y Gas , Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis
7.
Sci Total Environ ; 780: 146342, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33770601

RESUMEN

Classical naphthenic acids (NAs) are known to be primary aquatic toxicants of concern in the Athabasca oil sands region (AOSR), and are a component of naphthenic acid fraction compounds (NAFCs). Recent studies conducted in the AOSR have examined metals and polycyclic aromatic hydrocarbons in regional wetlands. However, few studies have described NAs and/or NAFCs in AOSR wetlands. To address this gap, we examined NAFC profiles in the water of different wetlands in the AOSR, including naturalized borrow pits (i.e., abandoned pits created by excavation of road-building materials), and opportunistically-formed wetlands associated with reclamation activities. For comparison, NAFC profiles from these wetlands were compared to an opportunistic wetland formed from tailings pond dyke seepage. Samples were prepared using solid-phase extraction and analyzed using negative-ion high-resolution Orbitrap mass spectrometry. Principal component analyses (PCA) revealed patterns to the NAFC profiles in the wetlands. The first distinct grouping of wetlands included water bodies associated with reclamation activities that are located on and/or adjacent to mining overburden. One other wetland, HATS5w, separated from all other wetlands during PCA, and had a unique NAFC profile; detailed examination of NAFCs revealed HATS5w contained the heaviest (i.e., high m/z components) and most unsaturated NAFCs among study locations, demonstrating the usefulness of high-resolution mass spectrometry for characterizing individual wetlands. The NAFCs of HATS5w are also substantially different from bitumen-derived inputs in overburden-adjacent opportunistic wetlands. Collectively, the NAFC profiles presented provide new information on background levels of polar bitumen-derived organics in AOSR wetlands.

8.
Toxicol Appl Pharmacol ; 248(3): 185-93, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20682327

RESUMEN

Some uncertainty exists regarding the purity of hexachlorobenzene (HCB) used in past toxicity studies. It has been suggested that reported toxic and biochemical effects initially attributed to HCB exposure may have actually been elicited by contamination of HCB by polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Herein, primary cultures of chicken embryo hepatocytes (CEH) were used to compare the potencies of two lots of reagent-grade hexachlorobenzene (HCB-old [HCB-O] and HCB-new [HCB-N]), highly purified HCB (HCB-P) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as inducers of ethoxyresorufin O-deethylase (EROD) activity, cytochrome P4501A4 (CYP1A4) messenger ribonucleic acid (mRNA) and CYP1A5 mRNA. The study also compared the EROD- and CYP1A4/5 mRNA-inducing potencies of HCB to the potencies of two mono-ortho substituted polychlorinated biphenyls (PCBs), 2,3,3',4,4'-pentachlorobiphenyl (PCB 105) and 2,3'4,4',5-pentachlorobiphenyl (PCB 118). HCB-O, HCB-N and HCB-P all induced EROD activity and up-regulated CYP1A4 and CYP1A5 mRNAs. Induction was not caused by contamination of HCB with PCDDs or PCDFs. Based upon a comparison of the EC(50) and EC(threshold) values for EROD and CYP1A4/5 mRNA concentration-response curves, the potency of HCB relative to the potency of TCDD was 0.0001, and was similar to that of PCB 105 and PCB 118. The maximal EROD activity and CYP1A4/5 mRNA expression differed greatly between HCB and TCDD, and may contribute to an overestimation of the ReP value calculated for highly purified HCB.


Asunto(s)
Citocromo P-450 CYP1A1/biosíntesis , Contaminación de Medicamentos , Hepatocitos/efectos de los fármacos , Hexaclorobenceno/aislamiento & purificación , Hexaclorobenceno/toxicidad , Animales , Hidrocarburo de Aril Hidroxilasas/biosíntesis , Células Cultivadas , Embrión de Pollo , Relación Dosis-Respuesta a Droga , Contaminación de Medicamentos/prevención & control , Inducción Enzimática/efectos de los fármacos , Inducción Enzimática/genética , Hepatocitos/enzimología
9.
Chemosphere ; 214: 148-157, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30265921

RESUMEN

Several recent studies have reported evidence that surface mining operations of bitumen in northern Alberta's oil sands (OS) region contribute significantly to the atmospheric deposition of metals and polycyclic aromatic compounds (PACs) within the vicinity of OS development. The present study examines the accumulation of PACs in boreal wetlands at varying distance from OS industrial activities with the use of semipermeable membrane devices (SPMDs) and wood frog (Lithobates sylvaticus) tadpoles. SPMDs were deployed in shallow lentic waterbodies adjacent to wood frog egg masses and were retrieved, along with tadpoles, approximately 35-45 days later. The highest concentrations of PACs were detected in SPMDs deployed within a 25 km radius of surface mining activity, consistent with snow deposition studies of PACs in the region. In wetlands located within the vicinity of surface mining activity, PAC profiles of SPMDs and wood frog tadpoles were dominated by C1-C4 alkylated PACs, including alkylated dibenzothiophenes, which are strongly indicative of petrogenic sources. Contrary to differences seen in the SPMD PAC concentrations, there were no obvious differences in the ∑PACs in wood frog tissue between wetland study sites, although alkylated fluorenes were found to be higher in tadpoles collected from a wetland located within 10 km of two bitumen upgrading facilities. The use of SPMDs in tandem with wood frog tadpoles can help assess the potential exposure of aquatic organisms to PACs in boreal wetlands.


Asunto(s)
Monitoreo del Ambiente/métodos , Larva/química , Membranas Artificiales , Yacimiento de Petróleo y Gas/química , Hidrocarburos Policíclicos Aromáticos/análisis , Humedales , Alberta , Animales , Monitoreo del Ambiente/instrumentación , Ranidae , Tiofenos/análisis
10.
Toxicol Sci ; 131(1): 139-52, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22923492

RESUMEN

The sensitivity of avian species to the toxic effects of dioxin-like compounds (DLCs) varies up to 1000-fold among species, and this variability has been associated with interspecies differences in aryl hydrocarbon receptor 1 ligand-binding domain (AHR1 LBD) sequence. We previously showed that LD(50) values, based on in ovo exposures to DLCs, were significantly correlated with in vitro EC(50) values obtained with a luciferase reporter gene (LRG) assay that measures AHR1-mediated induction of cytochrome P4501A in COS-7 cells transfected with avian AHR1 constructs. Those findings suggest that the AHR1 LBD sequence and the LRG assay can be used to predict avian species sensitivity to DLCs. In the present study, the AHR1 LBD sequences of 86 avian species were studied, and differences at amino acid sites 256, 257, 297, 324, 337, and 380 were identified. Site-directed mutagenesis, the LRG assay, and homology modeling highlighted the importance of each amino acid site in AHR1 sensitivity to 2,3,7,8-tetrachlorodibenzo-p-dioxin and other DLCs. The results of the study revealed that (1) only amino acids at sites 324 and 380 affect the sensitivity of AHR1 expression constructs of the 86 avian species to DLCs and (2) in vitro luciferase activity of AHR1 constructs containing only the LBD of the species of interest is significantly correlated (r (2) = 0.93, p < 0.0001) with in ovo toxicity data for those species. These results indicate promise for the use of AHR1 LBD amino acid sequences independently, or combined with the LRG assay, to predict avian species sensitivity to DLCs.


Asunto(s)
Dioxinas/toxicidad , Receptores de Hidrocarburo de Aril/metabolismo , Secuencia de Aminoácidos , Animales , Hidrocarburo de Aril Hidroxilasas/genética , Sitios de Unión , Aves , Western Blotting , Células COS , Técnicas de Cultivo de Célula , Chlorocebus aethiops , Dioxinas/química , Relación Dosis-Respuesta a Droga , Dosificación Letal Mediana , Ligandos , Hígado/efectos de los fármacos , Hígado/metabolismo , Luciferasas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Valor Predictivo de las Pruebas , Unión Proteica , Receptores de Hidrocarburo de Aril/química , Receptores de Hidrocarburo de Aril/genética , Alineación de Secuencia , Especificidad de la Especie , Transfección
11.
Comp Biochem Physiol C Toxicol Pharmacol ; 155(3): 498-505, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22227438

RESUMEN

Primary cultures of ring-necked pheasant (Phasianus colchicus) and Japanese quail (Coturnix japonica) embryo hepatocytes were used to compare the potencies of highly purified hexachlorobenzne (HCB-P), reagent-grade HCB (RG-HCB) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as inducers of ethoxyresorufin O-deethylase (EROD) activity, cytochrome P4501A (CYP1A4) messenger ribonucleic acid (mRNA) and CYP1A5 mRNA. HCB-P, RG-HCB and TCDD all induced EROD activity and up-regulated CYP1A4 and CYP1A5 mRNA. Induction was not caused by contamination of HCB with polychlorinated dibenzo-p-dioxins, dibenzofurans or biphenyls. Based upon a comparison of the EC(50) and EC(threshold) values for EROD and CYP1A4/5 concentration-response curves, the potency of HCB relative to TCDD was 0.001 in ring-necked pheasant and 0.01 in Japanese quail embryo hepatocytes. Differences in species sensitivity to HCB were found to be mainly dictated by differences in species sensitivity to TCDD rather than differences in the absolute potency of HCB. Consequently, ring-necked pheasant and Japanese quail embryo hepatocytes were found to be equally sensitive to HCB exposure. Species sensitivity comparisons were also made with chicken (Gallus gallus domesticus) and revealed that chicken embryo hepatocytes were less responsive to EROD induction (lower maximal response) by HCB compared to the embryo hepatocytes of pheasant and quail.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/metabolismo , Coturnix/metabolismo , Galliformes/metabolismo , Regulación Enzimológica de la Expresión Génica , Hepatocitos/efectos de los fármacos , Hexaclorobenceno/toxicidad , Animales , Hidrocarburo de Aril Hidroxilasas/genética , Supervivencia Celular , Coturnix/embriología , Coturnix/genética , Embrión no Mamífero/citología , Activación Enzimática , Inducción Enzimática , Galliformes/embriología , Galliformes/genética , Hepatocitos/citología , Hepatocitos/enzimología , Dibenzodioxinas Policloradas/toxicidad , Cultivo Primario de Células , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especificidad de la Especie
12.
Toxicol Sci ; 113(2): 380-91, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19884122

RESUMEN

Relative potencies of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), and 2,3,7,8-tetrachlorodibenzofuran (TCDF) were determined in vitro in primary hepatocyte cultures of chicken (Gallus gallus), ring-necked pheasant (Phasianus colchicus), and Japanese quail (Coturnix japonica) embryos. Concentration-dependent effects on ethoxyresorufin O-deethylase (EROD) activity and expression of cytochrome P4501A4 and cytochrome P4501A5 (CYP1A4 and CYP1A5) messenger RNA (mRNA) were determined in hepatocytes exposed to serial dilutions of TCDD, PeCDF, or TCDF for 24 h. In chicken hepatocytes, the three compounds were equipotent inducers of EROD activity and CYP1A4/CYP1A5 mRNA expression. However, in ring-necked pheasant and Japanese quail hepatocytes, PeCDF was more potent than TCDD (3- to 5-fold in ring-necked pheasant and 13- to 30-fold in Japanese quail). Among species, the rank order of sensitivity (most to least) to EROD and CYP1A4/CYP1A5 mRNA induction for TCDD and TCDF was chicken > ring-necked pheasant > Japanese quail. In contrast, the three species were approximately equisensitive to EROD and CYP1A4/CYP1A5 mRNA induction by PeCDF. It has generally been assumed that TCDD is the most potent "dioxin-like compound" (DLC) and that the chicken is the most sensitive avian species to CYP1A induction by all DLCs. This study indicates that PeCDF is more potent than TCDD in ring-necked pheasant and Japanese quail hepatocytes and that ring-necked pheasant, Japanese quail, and chicken hepatocytes are equally sensitive to CYP1A induction by PeCDF.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/metabolismo , Benzofuranos/toxicidad , Aves/metabolismo , Hepatocitos/efectos de los fármacos , Dibenzodioxinas Policloradas/toxicidad , Animales , Hidrocarburo de Aril Hidroxilasas/genética , Células Cultivadas , Pollos/metabolismo , Coturnix/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Inducción Enzimática , Galliformes/metabolismo , Hepatocitos/enzimología , ARN Mensajero/metabolismo
13.
Toxicol Lett ; 190(2): 134-9, 2009 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-19595750

RESUMEN

Several perfluoroalkyl compounds (PFCs) are ubiquitous environmental contaminants that can biomagnify in species at high trophic levels including wild birds. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) have been detected in wild birds and are known to reduce hatching success of laboratory-exposed chicken embryos at environmentally relevant concentrations. Limited toxicity data are available regarding avian exposure to PFCs of chain lengths greater than C(8), which are of increasing environmental relevance following the recent phase-out of PFOS and PFOA. In this study, linear PFOA, perfluoroundecanoic acid (PFUdA) and perfluorodecane sulfonate (PFDS) were injected into the air cell of white leghorn chicken eggs (Gallus gallus domesticus) prior to incubation to determine effects on embryo pipping success. Furthermore, mRNA expression of key genes involved in pathways implicated in PFC toxicity was monitored in liver tissue. PFOA, PFUdA or PFDS had no effect on embryonic pipping success at concentrations up to 10 microg/g. All PFCs accumulated in the liver to concentrations greater than the initial whole-egg concentration as determined by HPLC/MS/MS. Hepatic accumulation was highest for PFOA (4.5 times) compared to PFUdA and PFDS. Cytochrome P450 1A4 and liver fatty acid binding protein mRNA expression increased after exposure to PFUdA but was only statistically significant at 10 microg/g; several orders of magnitude higher than levels found in wild bird eggs. Based on the present results for white leghorn chickens, current environmental concentrations of PFOA, PFUdA and PFDS are unlikely to affect the hatching success of wild birds.


Asunto(s)
Caprilatos/toxicidad , Ácidos Carboxílicos/toxicidad , Desarrollo Embrionario/efectos de los fármacos , Fluorocarburos/toxicidad , Hígado/metabolismo , ARN Mensajero/biosíntesis , Ácidos Sulfónicos/toxicidad , Animales , Hidrocarburo de Aril Hidroxilasas/biosíntesis , Hidrocarburo de Aril Hidroxilasas/genética , Proteínas Aviares/biosíntesis , Proteínas Aviares/genética , Caprilatos/farmacocinética , Ácidos Carboxílicos/farmacocinética , Embrión de Pollo , Cromatografía Líquida de Alta Presión , Fluorocarburos/farmacocinética , Espectrometría de Masas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Procesos de Determinación del Sexo , Ácidos Sulfónicos/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA