Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Proteome Res ; 17(3): 946-960, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28994599

RESUMEN

With the increase in incidence of type 1 diabetes (T1DM), there is an urgent need to understand the early molecular and metabolic alterations that accompany the autoimmune disease. This is not least because in murine models early intervention can prevent the development of disease. We have applied a liquid chromatography (LC-) and gas chromatography (GC-) mass spectrometry (MS) metabolomics and lipidomics analysis of blood plasma and pancreas tissue to follow the progression of disease in three models related to autoimmune diabetes: the nonobese diabetic (NOD) mouse, susceptible to the development of autoimmune diabetes, and the NOD-E (transgenic NOD mice that express the I-E heterodimer of the major histocompatibility complex II) and NOD-severe combined immunodeficiency (SCID) mouse strains, two models protected from the development of diabetes. All three analyses highlighted the metabolic differences between the NOD-SCID mouse and the other two strains, regardless of diabetic status indicating that NOD-SCID mice are poor controls for metabolic changes in NOD mice. By comparing NOD and NOD-E mice, we show the development of T1DM in NOD mice is associated with changes in lipid, purine, and tryptophan metabolism, including an increase in kynurenic acid and a decrease in lysophospholipids, metabolites previously associated with inflammation.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Islotes Pancreáticos/metabolismo , Metabolismo de los Lípidos , Estado Prediabético/metabolismo , Purinas/metabolismo , Triptófano/metabolismo , Animales , Autoinmunidad , Cromatografía Liquida , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/patología , Análisis Discriminante , Modelos Animales de Enfermedad , Femenino , Cromatografía de Gases y Espectrometría de Masas , Expresión Génica , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Islotes Pancreáticos/inmunología , Islotes Pancreáticos/patología , Ácido Quinurénico/metabolismo , Lisofosfolípidos/metabolismo , Metabolómica/métodos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Estado Prediabético/inmunología , Estado Prediabético/patología , Análisis de Componente Principal , Multimerización de Proteína
2.
BMC Biol ; 13: 110, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26694920

RESUMEN

BACKGROUND: Insulin sensitivity in skeletal muscle is associated with metabolic flexibility, including a high capacity to increase fatty acid (FA) oxidation in response to increased lipid supply. Lipid overload, however, can result in incomplete FA oxidation and accumulation of potentially harmful intermediates where mitochondrial tricarboxylic acid cycle capacity cannot keep pace with rates of ß-oxidation. Enhancement of muscle FA oxidation in combination with mitochondrial biogenesis is therefore emerging as a strategy to treat metabolic disease. Dietary inorganic nitrate was recently shown to reverse aspects of the metabolic syndrome in rodents by as yet incompletely defined mechanisms. RESULTS: Herein, we report that nitrate enhances skeletal muscle FA oxidation in rodents in a dose-dependent manner. We show that nitrate induces FA oxidation through a soluble guanylate cyclase (sGC)/cGMP-mediated PPARß/δ- and PPARα-dependent mechanism. Enhanced PPARß/δ and PPARα expression and DNA binding induces expression of FA oxidation enzymes, increasing muscle carnitine and lowering tissue malonyl-CoA concentrations, thereby supporting intra-mitochondrial pathways of FA oxidation and enhancing mitochondrial respiration. At higher doses, nitrate induces mitochondrial biogenesis, further increasing FA oxidation and lowering long-chain FA concentrations. Meanwhile, nitrate did not affect mitochondrial FA oxidation in PPARα(-/-) mice. In C2C12 myotubes, nitrate increased expression of the PPARα targets Cpt1b, Acadl, Hadh and Ucp3, and enhanced oxidative phosphorylation rates with palmitoyl-carnitine; however, these changes in gene expression and respiration were prevented by inhibition of either sGC or protein kinase G. Elevation of cGMP, via the inhibition of phosphodiesterase 5 by sildenafil, also increased expression of Cpt1b, Acadl and Ucp3, as well as CPT1B protein levels, and further enhanced the effect of nitrate supplementation. CONCLUSIONS: Nitrate may therefore be effective in the treatment of metabolic disease by inducing FA oxidation in muscle.


Asunto(s)
GMP Cíclico/metabolismo , Ácidos Grasos/metabolismo , Músculo Esquelético/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Alimentación Animal/análisis , Animales , Dieta , Relación Dosis-Respuesta a Droga , Masculino , Biogénesis de Organelos , Oxidación-Reducción , Ratas , Ratas Wistar
3.
Nat Commun ; 13(1): 1748, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365625

RESUMEN

The endoplasmic reticulum (ER) regulates cellular protein and lipid biosynthesis. ER dysfunction leads to protein misfolding and the unfolded protein response (UPR), which limits protein synthesis to prevent cytotoxicity. Chronic ER stress in skeletal muscle is a unifying mechanism linking lipotoxicity to metabolic disease. Unidentified signals from cells undergoing ER stress propagate paracrine and systemic UPR activation. Here, we induce ER stress and lipotoxicity in myotubes. We observe ER stress-inducing lipid cell non-autonomous signal(s). Lipidomics identifies that palmitate-induced cell stress induces long-chain ceramide 40:1 and 42:1 secretion. Ceramide synthesis through the ceramide synthase 2 de novo pathway is regulated by UPR kinase Perk. Inactivation of CerS2 in mice reduces systemic and muscle ceramide signals and muscle UPR activation. The ceramides are packaged into extracellular vesicles, secreted and induce UPR activation in naïve myotubes through dihydroceramide accumulation. This study furthers our understanding of ER stress by identifying UPR-inducing cell non-autonomous signals.


Asunto(s)
Ceramidas , Estrés del Retículo Endoplásmico , Animales , Ceramidas/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Ratones , Músculo Esquelético/metabolismo , Respuesta de Proteína Desplegada
4.
Nat Commun ; 12(1): 1905, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33772024

RESUMEN

Brown and beige adipose tissue are emerging as distinct endocrine organs. These tissues are functionally associated with skeletal muscle, adipose tissue metabolism and systemic energy expenditure, suggesting an interorgan signaling network. Using metabolomics, we identify 3-methyl-2-oxovaleric acid, 5-oxoproline, and ß-hydroxyisobutyric acid as small molecule metabokines synthesized in browning adipocytes and secreted via monocarboxylate transporters. 3-methyl-2-oxovaleric acid, 5-oxoproline and ß-hydroxyisobutyric acid induce a brown adipocyte-specific phenotype in white adipocytes and mitochondrial oxidative energy metabolism in skeletal myocytes both in vitro and in vivo. 3-methyl-2-oxovaleric acid and 5-oxoproline signal through cAMP-PKA-p38 MAPK and ß-hydroxyisobutyric acid via mTOR. In humans, plasma and adipose tissue 3-methyl-2-oxovaleric acid, 5-oxoproline and ß-hydroxyisobutyric acid concentrations correlate with markers of adipose browning and inversely associate with body mass index. These metabolites reduce adiposity, increase energy expenditure and improve glucose and insulin homeostasis in mouse models of obesity and diabetes. Our findings identify beige adipose-brown adipose-muscle physiological metabokine crosstalk.


Asunto(s)
Tejido Adiposo Beige/metabolismo , Tejido Adiposo Pardo/metabolismo , Metabolismo Energético/genética , Homeostasis/genética , Transducción de Señal/genética , Adipocitos Marrones/metabolismo , Adipocitos Blancos/metabolismo , Tejido Adiposo Beige/citología , Tejido Adiposo Pardo/citología , Animales , Línea Celular , Células Cultivadas , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Espectrometría de Masas , Metabolómica/métodos , Ratones Endogámicos C57BL
5.
Diabetes ; 69(5): 893-901, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32086288

RESUMEN

An aging global population combined with sedentary lifestyles and unhealthy diets has contributed to an increasing incidence of obesity and type 2 diabetes. These metabolic disorders are associated with perturbations to nitric oxide (NO) signaling and impaired glucose metabolism. Dietary inorganic nitrate, found in high concentration in green leafy vegetables, can be converted to NO in vivo and demonstrates antidiabetic and antiobesity properties in rodents. Alongside tissues including skeletal muscle and liver, white adipose tissue is also an important physiological site of glucose disposal. However, the distinct molecular mechanisms governing the effect of nitrate on adipose tissue glucose metabolism and the contribution of this tissue to the glucose-tolerant phenotype remain to be determined. Using a metabolomic and stable-isotope labeling approach, combined with transcriptional analysis, we found that nitrate increases glucose uptake and oxidative catabolism in primary adipocytes and white adipose tissue of nitrate-treated rats. Mechanistically, we determined that nitrate induces these phenotypic changes in primary adipocytes through the xanthine oxidoreductase-catalyzed reduction of nitrate to NO and independently of peroxisome proliferator-activated receptor-α. The nitrate-mediated enhancement of glucose uptake and catabolism in white adipose tissue may be a key contributor to the antidiabetic effects of this anion.


Asunto(s)
Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Glucosa/metabolismo , Nitratos/farmacología , Óxido Nítrico/metabolismo , Xantina Deshidrogenasa/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Células Cultivadas , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/fisiología , Masculino , Metabolismo , Nitratos/administración & dosificación , Oxidación-Reducción , Ratas , Ratas Wistar
6.
Diabetes ; 66(3): 674-688, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28028076

RESUMEN

Exercise is an effective intervention for the prevention and treatment of type 2 diabetes. Skeletal muscle combines multiple signals that contribute to the beneficial effects of exercise on cardiometabolic health. Inorganic nitrate increases exercise efficiency, tolerance, and performance. The transcriptional regulator peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) coordinates the exercise-stimulated skeletal muscle fiber-type switch from glycolytic fast-twitch (type IIb) to oxidative slow-twitch (type I) and intermediate (type IIa) fibers, an effect reversed in insulin resistance and diabetes. We found that nitrate induces PGC1α expression and a switch toward type I and IIa fibers in rat muscle and myotubes in vitro. Nitrate induces the release of exercise/PGC1α-dependent myokine FNDC5/irisin and ß-aminoisobutyric acid from myotubes and muscle in rats and humans. Both exercise and nitrate stimulated PGC1α-mediated γ-aminobutyric acid (GABA) secretion from muscle. Circulating GABA concentrations were increased in exercising mice and nitrate-treated rats and humans; thus, GABA may function as an exercise/PGC1α-mediated myokine-like small molecule. Moreover, nitrate increased circulating growth hormone levels in humans and rodents. Nitrate induces physiological responses that mimic exercise training and may underlie the beneficial effects of this metabolite on exercise and cardiometabolic health.


Asunto(s)
Fibronectinas/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Nitratos/farmacología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/efectos de los fármacos , Condicionamiento Físico Animal , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Anciano , Ácidos Aminoisobutíricos , Animales , Beta vulgaris , Cromatografía Liquida , Método Doble Ciego , Femenino , Fibronectinas/metabolismo , Jugos de Frutas y Vegetales , Cromatografía de Gases y Espectrometría de Masas , Hormona del Crecimiento/metabolismo , Humanos , Inmunohistoquímica , Técnicas In Vitro , Resistencia a la Insulina , Masculino , Espectrometría de Masas , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Fibras Musculares de Contracción Rápida/efectos de los fármacos , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contracción Lenta/efectos de los fármacos , Fibras Musculares de Contracción Lenta/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ratas , Ratas Wistar , Transcriptoma , Ácido gamma-Aminobutírico/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo
7.
Diabetes ; 64(2): 471-484, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25249574

RESUMEN

Inorganic nitrate was once considered an oxidation end product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach, we mechanistically defined that nitrate not only increases the expression of thermogenic genes in brown adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid ß-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious comorbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. Because resulting beige/brite cells exhibit antiobesity and antidiabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome.


Asunto(s)
Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Nitratos/metabolismo , Nitratos/farmacología , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Adipocitos Marrones/fisiología , Adipocitos Blancos/efectos de los fármacos , Adipocitos Blancos/fisiología , Tejido Adiposo Pardo , Animales , Células Cultivadas , GMP Cíclico , Proteínas Quinasas Dependientes de GMP Cíclico , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Wistar
8.
Mol Biosyst ; 9(7): 1632-42, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23475189

RESUMEN

daf-2 is one of the most studied mutants in C. elegans: it contains a deletion in the gene orthologue of the insulin/insulin-like growth factor (IGF) receptor. Using high resolution (1)H NMR spectroscopy, metabolomics has helped to dissect the metabolic consequences of altered daf-2 signalling. Here, we present a detailed metabolomic analysis of daf-2, using NMR spectroscopy, gas chromatography mass spectrometry (GC-MS) and liquid chromatography mass spectrometry (LC-MS) to integrate information from different pathways. We have then used Pearson and partial correlation analysis to build networks to explore the central role of daf-2 in regulating fatty acid and amino acid metabolism. The results show the tight regulation between these two parts of the metabolome.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Metabolómica , Proteínas Mutantes , Receptor de Insulina/metabolismo , Transducción de Señal , Aminoácidos/metabolismo , Animales , Proteínas de Caenorhabditis elegans/genética , Ácidos Grasos/metabolismo , Redes y Vías Metabólicas , Metabolómica/métodos , Receptor de Insulina/genética , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA