Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nanotechnology ; 32(2): 025202, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-32942269

RESUMEN

Zinc oxide (ZnO) nanowires (NWs) as semiconductor piezoelectric nanostructures have emerged as material of interest for applications in energy harvesting, photonics, sensing, biomedical science, actuators or spintronics. The expression for the piezoelectric properties in semiconductor materials is concealed by the screening effect of the available carriers and the piezotronic effect, leading to complex nanoscale piezoresponse signals. Here, we have developed a metal-semiconductor-metal model to simulate the piezoresponse of single ZnO NWs, demonstrating that the apparent non-linearity in the piezoelectric coefficient arises from the asymmetry created by the forward and reversed biased Schottky barriers at the semiconductor-metal junctions. By directly measuring the experimental I-V characteristics of ZnO NWs with conductive atomic force microscope together with the piezoelectric vertical coefficient by piezoresponse force microscopy, and comparing them with the numerical calculations for our model, effective piezoelectric coefficients in the range d 33eff ∼ 8.6 pm V-1-12.3 pm V-1 have been extracted for ZnO NWs. We have further demonstrated via simulations the dependence between the effective piezoelectric coefficient d 33eff and the geometry and physical dimensions of the NW (radius to length ratio), revealing that the higher d 33eff is obtained for thin and long NWs due to the tensor nature proportionality between electric fields and deformation in NW geometries. Moreover, the non-linearity of the piezoresponse also leads to multiharmonic electromechanical response observed at the second and higher harmonics that indeed is not restricted to piezoelectric semiconductor materials but can be generalized to any type of asymmetric voltage drops on a piezoelectric structure as well as leaky wide band-gap semiconductor ferroelectrics.

2.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35008860

RESUMEN

Nanogenerators are interesting for biomedical applications, with a great potential for electrical stimulation of excitable cells. Piezoelectric ZnO nanosheets present unique properties for tissue engineering. In this study, nanogenerator arrays based on ZnO nanosheets are fabricated on transparent coverslips to analyse the biocompatibility and the electromechanical interaction with two types of muscle cells, smooth and skeletal. Both cell types adhere, proliferate and differentiate on the ZnO nanogenerators. Interestingly, the amount of Zn ions released over time from the nanogenerators does not interfere with cell viability and does not trigger the associated inflammatory response, which is not triggered by the nanogenerators themselves either. The local electric field generated by the electromechanical nanogenerator-cell interaction stimulates smooth muscle cells by increasing cytosolic calcium ions, whereas no stimulation effect is observed on skeletal muscle cells. The random orientation of the ZnO nanogenerators, avoiding an overall action potential aligned along the muscle fibre, is hypothesised to be the cause of the cell-type dependent response. This demonstrates the need of optimizing the nanogenerator morphology, orientation and distribution according to the potential biomedical use. Thus, this study demonstrates the cell-scale stimulation triggered by biocompatible piezoelectric nanogenerators without using an external source on smooth muscle cells, although it remarks the cell type-dependent response.


Asunto(s)
Materiales Biocompatibles/química , Suministros de Energía Eléctrica , Músculo Esquelético/citología , Miocitos del Músculo Liso/citología , Nanotecnología , Animales , Calcio/metabolismo , Línea Celular , Forma de la Célula , Citocinas/metabolismo , Estimulación Eléctrica , Análisis de Elementos Finitos , Iones , Macrófagos/metabolismo , Ratones , Factores de Tiempo , Zinc/análisis , Óxido de Zinc/química
3.
Sensors (Basel) ; 19(8)2019 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-31010076

RESUMEN

The increasing interest in the Internet of Things (IoT) has led to the rapid development of low-power sensors and wireless networks. However, there are still several barriers that make a global deployment of the IoT difficult. One of these issues is the energy dependence, normally limited by the capacitance of the batteries. A promising solution to provide energy autonomy to the IoT nodes is to harvest residual energy from ambient sources, such as motion, vibrations, light, or heat. Mechanical energy can be converted into electrical energy by using piezoelectric transducers. The piezoelectric generators provide an alternating electrical signal that must be rectified and, therefore, needs a power management circuit to adapt the output to the operating voltage of the IoT devices. The bonding and packaging of the different components constitute a large part of the cost of the manufacturing process of microelectromechanical systems (MEMS) and integrated circuits. This could be reduced by using a monolithic integration of the generator together with the circuitry in a single chip. In this work, we report the optimization, fabrication, and characterization of a vibration-driven piezoelectric MEMS energy harvester, and the design and simulation of a charge-pump converter based on a standard complementary metal-oxide-semiconductor (CMOS) technology. Finally, we propose combining MEMS and CMOS technologies to obtain a fully integrated system that includes the piezoelectric generator device and the charge-pump converter circuit without the need of external components. This solution opens new doors to the development of low-cost autonomous smart dust devices.

4.
Small ; 13(41)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28945947

RESUMEN

Local electric stimulation of tissues and cells has gained importance as therapeutic alternative in the treatment of many diseases. These alternatives aim to deliver a less invasively stimuli in liquid media, making imperative the development of versatile micro- and nanoscale solutions for wireless actuation. Here, a simple microfabrication process to produce suspended silicon microphotodiodes that can be activated by visible light to generate local photocurrents in their surrounding medium is presented. Electrical characterization using electrical probes confirms their diode behavior. To demonstrate their electrochemical performance, an indirect test is implemented in solution through photoelectrochemical reactions controlled by a white-LED lamp. Furthermore, their effects on biological systems are observed in vitro using mouse primary neurons in which the suspended microphotodiodes are activated periodically with white-LED lamp, bringing out observable morphological changes in neuronal processes. The results demonstrate a simplified and cost-effective wireless tool for photovoltaic current generation in liquid media at the microscale.


Asunto(s)
Electroquímica/métodos , Electrónica , Microtecnología/métodos , Silicio/química , Animales , Células Cultivadas , Electricidad , Luz , Ratones Endogámicos C57BL
5.
Nanomaterials (Basel) ; 13(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37630920

RESUMEN

The rapid increase of the Internet of Things (IoT) has led to significant growth in the development of low-power sensors. However; the biggest challenge in the expansion of the IoT is the energy dependency of the sensors. A promising solution that provides power autonomy to the IoT sensor nodes is energy harvesting (EH) from ambient sources and its conversion into electricity. Through 3D printing, it is possible to create monolithic harvesters. This reduces costs as it eliminates the need for subsequent assembly tools. Thanks to computer-aided design (CAD), the harvester can be specifically adapted to the environmental conditions of the application. In this work, a piezoelectric resonant energy harvester has been designed, fabricated, and electrically characterized. Physical characterization of the piezoelectric material and the final resonator was also performed. In addition, a study and optimization of the device was carried out using finite element modeling. In terms of electrical characterization, it was determined that the device can achieve a maximum output power of 1.46 mW when operated with an optimal load impedance of 4 MΩ and subjected to an acceleration of 1 G. Finally, a proof-of-concept device was designed and fabricated with the goal of measuring the current passing through a wire.

6.
Nanomaterials (Basel) ; 12(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36234398

RESUMEN

In this article, triboelectric effect has been used to harvest mechanical energy from human motion and convert it into electrical energy. To do so, different ways of optimizing the energy generated have been studied through the correct selection of materials, the design of new spacers to improve the contact surface area, and charge injection by high-voltage corona charging to increase the charge density of dielectric materials. Finally, a triboelectric nanogenerator (TENG) has been manufactured, which is capable of collecting the mechanical energy of the force applied by hand tapping and using it to power miniaturized electronic sensors in a self-sufficient and sustainable way. This work shows the theoretical concept and simulations of the proposed TENG device, as well as the experimental work carried out.

7.
Biomedicines ; 9(4)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808338

RESUMEN

A Ti-based alloy (Ti45Zr15Pd30Si5Nb5) with already proven excellent mechanical and biocompatibility features has been coated with piezoelectric zinc oxide (ZnO) to induce the electrical self-stimulation of cells. ZnO was grown onto the pristine alloy in two different morphologies: a flat dense film and an array of nanosheets. The effect of the combined material on osteoblasts (electrically stimulable cells) was analyzed in terms of proliferation, cell adhesion, expression of differentiation markers and induction of calcium transients. Although both ZnO structures were biocompatible and did not induce inflammatory response, only the array of ZnO nanosheets was able to induce calcium transients, which improved the proliferation of Saos-2 cells and enhanced the expression of some early differentiation expression genes. The usual motion of the cells imposes strain to the ZnO nanosheets, which, in turn, create local electric fields owing to their piezoelectric character. These electric fields cause the opening of calcium voltage gates and boost cell proliferation and early differentiation. Thus, the modification of the Ti45Zr15Pd30Si5Nb5 surface with an array of ZnO nanosheets endows the alloy with smart characteristics, making it capable of electric self-stimulation.

8.
Nanoscale ; 11(18): 8906-8917, 2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-31016299

RESUMEN

Biomimetic functional scaffolds for tissue engineering should fulfil specific requirements concerning structural, bio-chemical and electro-mechanical characteristics, depending on the tissue that they are designed to resemble. In bone tissue engineering, piezoelectric materials based on poly(vinylidene fluoride) (PVDF) are on the forefront, due to their inherent ability to generate surface charges under minor mechanical deformations. Nevertheless, PVDF's high hydrophobicity hinders sufficient cell attachment and expansion, which are essential in building biomimetic scaffolds. In this study, PVDF nanofibrous scaffolds were fabricated by electrospinning to achieve high piezoelectricity, which was compared with drop-cast membranes, as it was confirmed by XRD and FTIR measurements. Oxygen plasma treatment of the PVDF surface rendered it hydrophilic, and surface characterization revealed a long-term stability. XPS analysis and contact angle measurements confirmed an unparalleled two-year stability of hydrophilicity. Osteoblast cell culture on the permanently hydrophilic PVDF scaffolds demonstrated better cell spreading over the non-treated ones, as well as integration into the scaffold as indicated by SEM cross-sections. Intracellular calcium imaging confirmed a higher cell activation on the piezoelectric electrospun nanofibrous scaffolds. Combining these findings, and taking advantage of the self-stimulation of the cells due to their attachment on the piezoelectric PVDF nanofibers, a 3D tissue-like functional self-sustainable scaffold for bone tissue engineering was fabricated.


Asunto(s)
Nanofibras/química , Polivinilos/química , Andamios del Tejido/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Calcio/análisis , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Estimulación Eléctrica , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Confocal , Nanofibras/toxicidad , Osteoblastos/citología , Gases em Plasma/química , Propiedades de Superficie
9.
Nanomaterials (Basel) ; 8(10)2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-30274363

RESUMEN

The electric power output of a piezoelectric nanogenerator (PENG) depends on the various physical parameters of the constituent materials, including the piezoelectric coefficient, Young's modulus, and dielectric constant. Herein, we report the mechanical and electrical properties of a poly(vinylidene fluoride)⁻BaTiO3 (PVDF⁻BTO) composite-based PENG. Variation of the BTO nanoparticle (NP) content enabled the systematic tuning of the physical parameters that are related to power generation in the composite. The Young's modulus of the PVDF⁻BTO composite initially increased, and then eventually decreased, with the increasing BTO content, which was probably due to the clustering effect of the high modulus BTO NPs. The dielectric constant of the composite continuously increased as the BaTiO3 content increased. The piezoelectric outputs were greatly enhanced at 10 wt% of BTO, where the Young's modulus was the highest. These results indicate that the Young's modulus plays an important role in the piezoelectric power generation of the composite-based PENGs.

10.
Nanoscale Res Lett ; 12(1): 51, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28101855

RESUMEN

This paper presents a study about the dependence of the hydrothermal growth of ZnO nanowires (NWs) with the passivation level of the active surface of the Au catalyst layer. The hydrothermal method has many potential applications because of its low processing temperature, feasibility, and low cost. However, when a gold thin film is utilized as the seed material, the grown NWs often lack morphological homogeneity; their distribution is not uniform and the reproducibility of the growth is low. We hypothesize that the state or condition of the active surface of the Au catalyst layer has a critical effect on the uniformity of the NWs. Inspired by traditional electrochemistry experiments, in which Au electrodes are typically activated before the measurements, we demonstrate that such activation is a simple way to effectively assist and enhance NW growth. In addition, several cleaning processes are examined to find one that yields NWs with optimal quality, density, and vertical alignment. We find cyclic voltammetry measurements to be a reliable indicator of the seed-layer quality for subsequent NW growth. Therefore, we propose the use of this technique as a standard procedure prior to the hydrothermal synthesis of ZnO NWs to control the growth reproducibility and to allow high-yield wafer-level processing.

11.
Adv Mater ; 29(24)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28437016

RESUMEN

Noninvasive methods for in situ electrical stimulation of human cells open new frontiers to future bioelectronic therapies, where controlled electrical impulses could replace the use of chemical drugs for disease treatment. Here, this study demonstrates that the interaction of living cells with piezoelectric nanogenerators (NGs) induces a local electric field that self-stimulates and modulates their cell activity, without applying an additional chemical or physical external stimulation. When cells are cultured on top of the NGs, based on 2D ZnO nanosheets, the electromechanical NG-cell interactions stimulate the motility of macrophages and trigger the opening of ion channels present in the plasma membrane of osteoblast-like cells (Saos-2) inducing intracellular calcium transients. In addition, excellent cell viability, proliferation, and differentiation are validated. This in situ cell-scale electrical stimulation of osteoblast-like cells can be extrapolated to other excitable cells such as neurons or muscle cells, paving the way for future bioelectronic medicines based on cell-targeted electrical impulses.


Asunto(s)
Comunicación Celular , Diferenciación Celular , Estimulación Eléctrica , Humanos , Neuronas , Osteoblastos
12.
Biomaterials ; 139: 67-74, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28586720

RESUMEN

Remote microactuators are of great interest in biology and medicine as minimally-invasive tools for cellular stimulation. Remote actuation can be achieved by active magnetostrictive transducers which are capable of changing shape in response to external magnetic fields thereby creating controlled displacements. Among the magnetostrictive materials, Galfenol, the multifaceted iron-based smart material, offers high magnetostriction with robust mechanical properties. In order to explore these capabilities for biomedical applications, it is necessary to study the feasibility of material miniaturization in standard fabrication processes as well as evaluate the biocompatibility. Here we develop a technology to fabricate, release, and suspend Galfenol-based microparticles, without affecting the integrity of the material. The morphology, composition and magnetic properties of the material itself are characterized. The direct cytotoxicity of Galfenol is evaluated in vitro using human macrophages, osteoblast and osteosarcoma cells. In addition, cytotoxicity and actuation of Galfenol microparticles in suspension are evaluated using human macrophages. The biological parameters analyzed indicate that Galfenol is not cytotoxic, even after internalization of some of the particles by macrophages. The microparticles were remotely actuated forming intra- and extracellular chains that did not impact the integrity of the cells. The results propose Galfenol as a suitable material to develop remote microactuators for cell biology studies and intracellular applications.


Asunto(s)
Materiales Biocompatibles/farmacología , Galio/farmacología , Hierro/farmacología , Células THP-1/efectos de los fármacos , Materiales Biocompatibles/química , Ingeniería Biomédica , Adhesión Celular , Supervivencia Celular/efectos de los fármacos , Galio/química , Humanos , Hierro/química , Miniaturización , Cultivo Primario de Células , Silicio/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA