Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35409394

RESUMEN

Poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) enhance the delivery of therapeutic enzymes for replacement therapy of lysosomal storage disorders. Previous studies examined NPs encapsulating or coated with enzymes, but these formulations have never been compared. We examined this using hyaluronidase (HAse), deficient in mucopolysaccharidosis IX, and acid sphingomyelinase (ASM), deficient in types A−B Niemann−Pick disease. Initial screening of size, PDI, ζ potential, and loading resulted in the selection of the Lactel II co-polymer vs. Lactel I or Resomer, and Pluronic F68 surfactant vs. PVA or DMAB. Enzyme input and addition of carrier protein were evaluated, rendering NPs having, e.g., 181 nm diameter, 0.15 PDI, −36 mV ζ potential, and 538 HAse molecules encapsulated per NP. Similar NPs were coated with enzyme, which reduced loading (e.g., 292 HAse molecules/NP). NPs were coated with targeting antibodies (> 122 molecules/NP), lyophilized for storage without alterations, and acceptably stable at physiological conditions. NPs were internalized, trafficked to lysosomes, released active enzyme at lysosomal conditions, and targeted both peripheral organs and the brain after i.v. administration in mice. While both formulations enhanced enzyme delivery compared to free enzyme, encapsulating NPs surpassed coated counterparts (18.4- vs. 4.3-fold enhancement in cells and 6.2- vs. 3-fold enhancement in brains), providing guidance for future applications.


Asunto(s)
Terapia de Reemplazo Enzimático , Nanopartículas , Animales , Lisosomas/metabolismo , Ratones , Polímeros/metabolismo , Tensoactivos/metabolismo
2.
J Pharmacol Exp Ther ; 370(3): 823-833, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31101681

RESUMEN

Induction of lysosomal exocytosis alleviates lysosomal storage of undigested metabolites in cell models of lysosomal disorders (LDs). However, whether this strategy affects other vesicular compartments, e.g., those involved in endocytosis, is unknown. This is important both to predict side effects and to use this strategy in combination with therapies that require endocytosis for intracellular delivery, such as lysosomal enzyme replacement therapy (ERT). We investigated this using δ-tocopherol as a model previously shown to induce lysosomal exocytosis and cell models of type A Niemann-Pick disease, a LD characterized by acid sphingomyelinase (ASM) deficiency and sphingomyelin storage. δ-Tocopherol and derivative CF3-T reduced net accumulation of fluid phase, ligands, and polymer particles via phagocytic, caveolae-, clathrin-, and cell adhesion molecule (CAM)-mediated pathways, yet the latter route was less affected due to receptor overexpression. In agreement, δ-tocopherol lowered uptake of recombinant ASM by deficient cells (known to occur via the clathrin pathway) and via targeting intercellular adhesion molecule-1 (associated to the CAM pathway). However, the net enzyme activity delivered and lysosomal storage attenuation were greater via the latter route. Data suggest stimulation of exocytosis by tocopherols is not specific of lysosomes and affects endocytic cargo. However, this effect was transient and became unnoticeable several hours after tocopherol removal. Therefore, induction of exocytosis in combination with therapies requiring endocytic uptake, such as ERT, may represent a new type of drug interaction, yet this strategy could be valuable if properly timed for minimal interference.


Asunto(s)
Endocitosis/efectos de los fármacos , Terapia de Reemplazo Enzimático/métodos , Enfermedad de Niemann-Pick Tipo A/tratamiento farmacológico , Esfingomielina Fosfodiesterasa/uso terapéutico , Tocoferoles/farmacología , Animales , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Terapia Combinada , Interacciones Farmacológicas , Exocitosis/efectos de los fármacos , Humanos , Nanopartículas , Proteínas Recombinantes/farmacocinética , Esfingomielina Fosfodiesterasa/administración & dosificación , Esfingomielina Fosfodiesterasa/farmacocinética
3.
Mol Ther ; 25(7): 1686-1696, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28606376

RESUMEN

Acid sphingomyelinase deficiency in type B Niemann-Pick disease leads to lysosomal sphingomyelin storage, principally affecting lungs, liver, and spleen. Infused recombinant enzyme is beneficial, yet its delivery to the lungs is limited and requires higher dosing than liver and spleen, leading to potentially adverse reactions. Previous studies showed increased enzyme pulmonary uptake by nanocarriers targeted to ICAM-1, a protein overexpressed during inflammation. Here, using polystyrene and poly(lactic-co-glycolic acid) nanocarriers, we optimized lung delivery by varying enzyme dose and nanocarrier concentration, verified endocytosis and lysosomal trafficking in vivo, and evaluated delivered activity and effects. Raising the enzyme load of nanocarriers progressively increased absolute enzyme delivery to all lung, liver, and spleen, over the naked enzyme. Varying nanocarrier concentration inversely impacted lung versus liver and spleen uptake. Mouse intravital and postmortem examination verified endocytosis, transcytosis, and lysosomal trafficking using nanocarriers. Compared to naked enzyme, nanocarriers increased enzyme activity in organs and reduced lung sphingomyelin storage and macrophage infiltration. Although old mice with advanced disease showed reactivity (pulmonary leukocyte infiltration) to injections, including buffer without carriers, antibody, or enzyme, younger mice with mild disease did not. We conclude that anti-ICAM nanocarriers may result in effective lung enzyme therapy using low enzyme doses.


Asunto(s)
Anticuerpos Monoclonales/química , Portadores de Fármacos , Molécula 1 de Adhesión Intercelular/metabolismo , Nanopartículas/química , Enfermedad de Niemann-Pick Tipo B/terapia , Esfingomielina Fosfodiesterasa/farmacología , Animales , Anticuerpos Monoclonales/metabolismo , Transporte Biológico , Composición de Medicamentos , Endocitosis , Humanos , Molécula 1 de Adhesión Intercelular/genética , Ácido Láctico/química , Ácido Láctico/metabolismo , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/patología , Pulmón/efectos de los fármacos , Pulmón/enzimología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Terapia Molecular Dirigida , Nanopartículas/administración & dosificación , Enfermedad de Niemann-Pick Tipo B/enzimología , Enfermedad de Niemann-Pick Tipo B/genética , Enfermedad de Niemann-Pick Tipo B/patología , Ácido Poliglicólico/química , Ácido Poliglicólico/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Poliestirenos/química , Poliestirenos/metabolismo , Esfingomielina Fosfodiesterasa/química , Esfingomielina Fosfodiesterasa/deficiencia , Esfingomielinas/metabolismo , Bazo/efectos de los fármacos , Bazo/enzimología , Bazo/patología
4.
Biomacromolecules ; 18(6): 2000-2011, 2017 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-28525259

RESUMEN

A series of biodegradable drug delivery polymers with intrinsic multifunctionality have been designed and synthesized utilizing a polyphosphazene macromolecular engineering approach. Novel water-soluble polymers, which contain carboxylic acid and pyrrolidone moieties attached to an inorganic phosphorus-nitrogen backbone, were characterized by a suite of physicochemical methods to confirm their structure, composition, and molecular sizes. All synthesized polyphosphazenes displayed composition-dependent hydrolytic degradability in aqueous solutions at neutral pH. Their formulations were stable at lower temperatures, potentially indicating adequate shelf life, but were characterized by accelerated degradation kinetics at elevated temperatures, including 37 °C. It was found that synthesized polyphosphazenes are capable of environmentally triggered self-assembly to produce nanoparticles with narrow polydispersity in the size range of 150-700 nm. Protein loading capacity of copolymers has been validated via their ability to noncovalently bind avidin without altering biological functionality. Acid-induced membrane-disruptive activity of polyphosphazenes has been established with an onset corresponding to the endosomal pH range and being dependent on polymer composition. The synthesized polyphosphazenes facilitated cell-surface interactions followed by time-dependent, vesicular-mediated, and saturable internalization of a model protein cargo into cancer cells, demonstrating the potential for intracellular delivery.


Asunto(s)
Ácidos Carboxílicos/química , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Pirrolidinonas/química , Animales , Avidina/metabolismo , Transporte Biológico , Línea Celular Tumoral , Composición de Medicamentos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Hidrólisis , Nanopartículas/ultraestructura , Compuestos Organofosforados/síntesis química , Compuestos Organofosforados/farmacología , Tamaño de la Partícula , Polímeros/síntesis química , Polímeros/farmacología , Porcinos
5.
Adv Funct Mater ; 26(20): 3382-3393, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27375374

RESUMEN

When administered intravenously, active targeting of drug nanocarriers (NCs) improves biodistribution and endocytosis. Targeting may also improve oral delivery of NCs to treat gastrointestinal (GI) pathologies or for systemic absoption. However, GI instability of targeting moieties compromises this strategy. We explored whether encapsulation of antibody-coated NCs in microcapsules would protect against gastric degradation, providing NCs release and targeting in intestinal conditions. We used nanoparticles coated with antibodies against intercellular adhesion molecule-1 (anti-ICAM) or non-specific IgG. NCs (~160-nm) were encapsulated in ~180-µm microcapsules with an alginate core, in the absence or presence of a chitosan shell. We found >95% NC encapsulation within microcapsules and <10% NC release from microcapsules in storage. There was minimal NC release at gastric pH (<10%) and burst release at intestinal pH (75-85%), slightly attenuated by chitosan. Encapsulated NCs afforded increased protection against degradation (3-4 fold) and increased cell targeting (8-20 fold) after release vs. non-encapsulated NCs. Mouse oral gavage showed that microencapsulation provided 38-65% greater protection of anti-ICAM NCs in the GI tract, 40% lower gastric retention, and 4-9-fold enhanced intestinal biodistribution vs. non-encapsulated NCs. Therefore, microencapsulation of antibody-targeted NCs may enable active targeting strategies to be effective in the context of oral drug delivery.

6.
Mol Pharm ; 13(2): 357-368, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26702793

RESUMEN

Many cellular activities and pharmaceutical interventions involve endocytosis and delivery to lysosomes for processing. Hence, lysosomal processing defects can cause cell and tissue damage, as in lysosomal storage diseases (LSDs) characterized by lysosomal accumulation of undegraded materials. This storage causes endocytic and trafficking alterations, which exacerbate disease and hinder treatment. However, there have been no systematic studies comparing different endocytic routes in LSDs. Here, we used genetic and pharmacological models of four LSDs (type A Niemann-Pick, type C Niemann-Pick, Fabry, and Gaucher diseases) and evaluated the pinocytic and receptor-mediated activity of the clathrin-, caveolae-, and macropinocytic routes. Bulk pinocytosis was diminished in all diseases, suggesting a generic endocytic alteration linked to lysosomal storage. Fluid-phase (dextran) and ligand (transferrin) uptake via the clathrin route were lower for all LSDs. Fluid-phase and ligand (cholera toxin B) uptake via the caveolar route were both affected but less acutely in Fabry or Gaucher diseases. Epidermal growth factor-induced macropinocytosis was altered in Niemann-Pick cells but not other LSDs. Intracellular trafficking of ligands was also distorted in LSD versus wild-type cells. The extent of these endocytic alterations paralleled the level of cholesterol storage in disease cell lines. Confirming this, pharmacological induction of cholesterol storage in wild-type cells disrupted endocytosis, and model therapeutics restored uptake in proportion to their efficacy in attenuating storage. This suggests a proportional and reversible relationship between endocytosis and lipid (cholesterol) storage. By analogy, the accumulation of biological material in other diseases, or foreign material from drugs or their carriers, may cause similar deficits, warranting further investigation.


Asunto(s)
Colesterol/metabolismo , Endocitosis/fisiología , Enfermedad de Gaucher/metabolismo , Lípidos/química , Enfermedades por Almacenamiento Lisosomal/metabolismo , Lisosomas/metabolismo , Enfermedades de Niemann-Pick/metabolismo , Transporte Biológico , Clatrina/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Enfermedad de Gaucher/patología , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Enfermedades por Almacenamiento Lisosomal/patología , Microscopía Electrónica de Rastreo , Enfermedades de Niemann-Pick/patología , Pinocitosis/fisiología , Piel/metabolismo , Piel/patología
7.
Biomacromolecules ; 17(10): 3127-3137, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27585187

RESUMEN

Targeting of drug carriers to endocytic cell receptors facilitates intracellular drug delivery. Carrier size and number of targeting moieties (valency) influence cell binding and uptake. However, how these parameters influence receptor-mediated cell signaling (the link between binding and uptake) remains uncharacterized. We studied this using polymer carriers of different sizes and valencies, targeted to endothelial intercellular adhesion molecule-1 (ICAM-1), a marker overexpressed in many pathologies. Unexpectedly, induction of cell signals (ceramide and protein kinase C (PKC) enrichment and activation) and uptake, were independent of carrier avidity, total number of carriers bound per cell, cumulative cell surface area occupied by carriers, number of targeting antibodies at the carrier-cell contact, and cumulative receptor engagement by all bound carriers. Instead, "valency density" (number of antibodies per carrier surface area) ruled signaling, and carrier size independently influenced uptake. These results are key to understanding the interplay between carrier design parameters and receptor-mediated signaling conducive to endocytosis, paramount for intracellular drug delivery.


Asunto(s)
Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Molécula 1 de Adhesión Intercelular/química , Polímeros/química , Ceramidas/biosíntesis , Portadores de Fármacos/uso terapéutico , Endocitosis/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Molécula 1 de Adhesión Intercelular/uso terapéutico , Polímeros/uso terapéutico , Unión Proteica , Proteína Quinasa C/biosíntesis
8.
Mol Pharm ; 12(5): 1366-76, 2015 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-25849869

RESUMEN

Pharmaceutical intervention often requires therapeutics and/or their carriers to enter cells via endocytosis. Therefore, endocytic aberrancies resulting from disease represent a key, yet often overlooked, parameter in designing therapeutic strategies. In the case of lysosomal storage diseases (LSDs), characterized by lysosomal accumulation of undegraded substances, common clinical interventions rely on endocytosis of recombinant enzymes. However, the lysosomal defect in these diseases can affect endocytosis, as we recently demonstrated for clathrin-mediated uptake in patient fibroblasts with type A Niemann-Pick disease (NPD), a disorder characterized by acid sphingomylinase (ASM) deficiency and subsequent sphingomyelin storage. Using similar cells, we have examined if this is also the case for clathrin-independent pathways, including caveolae-mediated endocytosis and macropinocytosis. We observed impaired caveolin-1 enrichment at ligand-binding sites in NPD relative to wild type fibroblasts, corresponding with altered uptake of ligands and fluid-phase markers by both pathways. Similarly, aberrant lysosomal storage of sphingomyelin induced by pharmacological means also diminished uptake. Partial degradation of the lysosomal storage by untargeted recombinant ASM led to partial uptake enhancement, whereas both parameters were restored to wild type levels by ASM delivery using model polymer nanocarriers specifically targeted to intercellular adhesion molecule-1. Carriers also restored caveolin-1 enrichment at ligand-binding sites and uptake through the caveolar and macropinocytic routes. These results demonstrate a link between lysosomal storage in NPD and alterations in clathrin-independent endocytosis, which could apply to other LSDs. Hence, this study shall guide the design of therapeutic approaches using viable endocytic pathways.


Asunto(s)
Caveolina 1/metabolismo , Endocitosis/fisiología , Molécula 1 de Adhesión Intercelular/metabolismo , Enfermedad de Niemann-Pick Tipo A/metabolismo , Células Cultivadas , Humanos , Enfermedades por Almacenamiento Lisosomal/metabolismo , Microscopía Fluorescente
9.
Pharm Res ; 32(4): 1264-78, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25319100

RESUMEN

PURPOSE: Delivery of therapeutics to neurons is paramount to treat neurological conditions, including many lysosomal storage disorders. However, key aspects of drug-carrier behavior in neurons are relatively unknown: the occurrence of non-canonical endocytic pathways (present in other cells); whether carriers that traverse the blood-brain barrier are, contrarily, retained within neurons; if neuron-surface receptors are accessible to bulky carriers compared to small ligands; or if there are differences regarding neuronal compartments (neuron body vs. neurites) pertaining said parameters. We have explored these questions using model polymer nanocarriers targeting intercellular adhesion molecule-1 (ICAM-1). METHODS: Differentiated human neuroblastoma cells were incubated with anti-ICAM-coated polystyrene nanocarriers and analyzed by fluorescence microscopy. RESULTS: ICAM-1 expression and nanocarrier binding was enhanced in altered (TNFα) vs. control conditions. While small ICAM-1 ligands (anti-ICAM) preferentially accessed the cell body, anti-ICAM nanocarriers bound with faster kinetics to neurites, yet reached similar saturation over time. Anti-ICAM nanocarriers were also endocytosed with faster kinetics and lower saturation levels in neurites. Non-classical cell adhesion molecule (CAM) endocytosis ruled uptake, and neurite-to-cell body transport was inferred. Nanocarriers trafficked to lysosomes, delivering active enzymes (dextranase) with substrate reduction in a lysosomal-storage disease model. CONCLUSION: ICAM-1-targeting holds potential for intracellular delivery of therapeutics to neurons.


Asunto(s)
Dextranasa/administración & dosificación , Portadores de Fármacos/química , Endocitosis/efectos de los fármacos , Molécula 1 de Adhesión Intercelular/metabolismo , Lisosomas/metabolismo , Nanoestructuras/química , Neuronas/efectos de los fármacos , Transporte Biológico , Línea Celular Tumoral , Dextranasa/farmacocinética , Dextranasa/farmacología , Humanos , Molécula 1 de Adhesión Intercelular/genética , Enfermedades por Almacenamiento Lisosomal , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Neuronas/metabolismo , Especificidad por Sustrato
10.
Adv Funct Mater ; 24(19): 2899-2906, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25018687

RESUMEN

Design of materials to aid intracellular delivery of agents can greatly improve medical treatments. While DNA is a molecule difficult to introduce into cells, DNA can be engineered into devices capable of intracellular delivery. Yet, transport mediated by DNA-devices void of other structural material, with size greater than that associated with non-specific penetration, and with targeting capacity enough to overcome non-specific pathways has not been achived. This study demonstrates that this is possible. Submicrometer (200-nm) dendrimers built of DNA (nucleodendrimers (NDs)) are coupled to antibodies against selected cell-surface receptors and compared to polymer nanoparticles (NPs). NDs and NPs bind specifically to cells expressing these targets and efficiently enter cells via the pathway associated with the selected receptor. While NPs traffic to perinuclear endo-lysosomes, NDs remain scattered throughout the cell, suggesting endosomal escape. This is confirmed in vitro, where NDs disrupt membranous vesicles at endosomal-like pH and in cell culture, where they: provide endosomal escape of model drugs, sugars, proteins, and nucleic acids; allow access to other intracellular compartments; result in measurable effects of cargoes; and do not cause cytotoxicity. Therefore, these DNA-nanodevices can be used to selectively overcome intracellular barriers, underscoring the growing range of applications of DNA materials.

11.
Mol Pharm ; 11(12): 4350-62, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25301142

RESUMEN

Ligand-targeted, receptor-mediated endocytosis is commonly exploited for intracellular drug delivery. However, cells-surface receptors may follow distinct endocytic fates when bound by monomeric vs multimeric ligands. Our purpose was to study this paradigm using ICAM-1, an endothelial receptor involved in inflammation, to better understand its regulation and potential for drug delivery. Our procedure involved fluorescence microscopy of human endothelial cells to determine the endocytic behavior of unbound ICAM-1 vs ICAM-1 bound by model ligands: monomeric (anti-ICAM) vs multimeric (anti-ICAM biotin-streptavidin conjugates or anti-ICAM coated onto 100 nm nanocarriers). Our findings suggest that both monomeric and multimeric ligands undergo a similar endocytic pathway sensitive to amiloride (∼50% inhibition), but not inhibitors of clathrin-pits or caveoli. After 30 min, ∼60-70% of both ligands colocalized with Rab11a-compartments. By 3-5 h, ∼65-80% of multimeric anti-ICAM colocalized with perinuclear lysosomes with ∼60-80% degradation, while 70% of monomeric anti-ICAM remained associated with Rab11a at the cell periphery and recycled to and from the cell-surface with minimal (<10%) lysosomal colocalization and minimal (≤15%) degradation. In the absence of ligands, ICAM-1 also underwent amiloride-sensitive endocytosis with peripheral distribution, suggesting that monomeric (not multimeric) anti-ICAM follows the route of this receptor. In conclusion, ICAM-1 can mediate different intracellular itineraries, revealing new insight into this biological pathway and alternative avenues for drug delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Molécula 1 de Adhesión Intercelular/química , Molécula 1 de Adhesión Intercelular/metabolismo , Línea Celular , Portadores de Fármacos/química , Células Endoteliales/metabolismo , Humanos
12.
Mol Pharm ; 11(8): 2887-95, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-24949999

RESUMEN

Drugs often use endocytosis to achieve intracellular delivery, either by passive uptake from the extracellular fluid or by active targeting of cell surface features such as endocytic receptors. An example is enzyme replacement therapy, a clinically practiced treatment for several lysosomal storage diseases where glycosylated recombinant enzymes naturally target the mannose-6-phosphate receptor and are internalized by clathrin mediated endocytosis (CME). However, lysosomal substrate accumulation, a hallmark of these diseases, has been indirectly linked to aberrant endocytic activity. These effects are poorly understood, creating an obstacle to therapeutic efficiency. Here we explored endocytic activity in fibroblasts from patients with type A Niemann-Pick disease, a lysosomal storage disease characterized by acid sphingomyelinase (ASM) deficiency. The uptake of fluid phase markers and clathrin-associated ligands, formation of endocytic structures, and recruitment of intracellular clathrin to ligand binding sites were all altered, demonstrating aberrant CME in these cells. Model polymer nanocarriers targeted to intercellular adhesion molecule-1 (ICAM-1), which are internalized by a clathrin-independent route, enhanced the intracellular delivery of recombinant ASM more than 10-fold compared to free enzyme. This strategy reduced substrate accumulation and restored clathrin endocytic activity to wild-type levels. There appears to be a relationship between lysosomal storage and diminished CME, and bypassing this pathway by targeting ICAM-1 may enhance future therapies for lysosomal storage diseases.


Asunto(s)
Clatrina/química , Endocitosis/efectos de los fármacos , Molécula 1 de Adhesión Intercelular/metabolismo , Enfermedades de Niemann-Pick/metabolismo , Animales , Anticuerpos Monoclonales/química , Sitios de Unión , Membrana Celular/metabolismo , Portadores de Fármacos/química , Terapia de Reemplazo Enzimático , Fibroblastos/metabolismo , Humanos , Ligandos , Lípidos/química , Lisosomas/química , Lisosomas/metabolismo , Ratones , Microscopía Electrónica de Rastreo , Nanomedicina/métodos , Nanopartículas/química , Fenotipo , Pinocitosis , Polímeros/química , Proteínas Recombinantes/química , Esfingomielina Fosfodiesterasa/química
13.
Pharm Res ; 31(7): 1855-66, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24558007

RESUMEN

PURPOSE: The blood-brain barrier (BBB) represents a target for therapeutic intervention and an obstacle for brain drug delivery. Targeting endocytic receptors on brain endothelial cells (ECs) helps transport drugs and carriers into and across this barrier. While most receptors tested are associated with clathrin-mediated pathways, clathrin-independent routes are rather unexplored. We have examined the potential for one of these pathways, cell adhesion molecule (CAM)-mediated endocytosis induced by targeting intercellular adhesion molecule -1 (ICAM-1), to transport drug carriers into and across BBB models. METHODS: Model polymer nanocarriers (NCs) coated with control IgG or antibodies against ICAM-1 (IgG NCs vs. anti-ICAM NCs; ~250-nm) were incubated with human brain ECs, astrocytes (ACs), or pericytes (PCs) grown as monocultures or bilayered (endothelial+subendothelial) co-cultures. RESULTS: ICAM-1 was present and overexpressed in disease-like conditions on ECs and, at a lesser extent, on ACs and PCs which are BBB subendothelial components. Specific targeting and CAM-mediated uptake of anti-ICAM NCs occurred in these cells, although this was greater for ECs. Anti-ICAM NCs were transported across endothelial monolayers and endothelial+subendothelial co-cultures modeling the BBB. CONCLUSIONS: CAM-mediated transport induced by ICAM-1 targeting operates in endothelial and subendothelial cellular components of the BBB, which may provide an avenue to overcome this barrier.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos , Células Endoteliales/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Anticuerpos/inmunología , Transporte Biológico , Barrera Hematoencefálica/citología , Línea Celular , Portadores de Fármacos/química , Humanos , Molécula 1 de Adhesión Intercelular/inmunología
14.
J Inherit Metab Dis ; 36(3): 467-77, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22968581

RESUMEN

Targeting lysosomal enzymes to receptors involved in transport into and across cells holds promise to enhance peripheral and brain delivery of enzyme replacement therapies (ERTs) for lysosomal storage disorders. Receptors being explored include those associated with clathrin-mediated pathways, yet other pathways seem also viable. Well characterized examples are that of transferrin receptor (TfR) and intercellular adhesion molecule 1 (ICAM-1), involved in iron transport and leukocyte extravasation, respectively. TfR and ICAM-1 support ERT delivery via clathrin- vs. cell adhesion molecule-mediated mechanisms, displaying different valency and size restrictions. To comparatively assess this, we used antibodies vs. larger multivalent antibody-coated carriers and evaluated TfR vs. ICAM-1 binding and endocytosis in endothelial cells, as well as in vivo biodistribution and delivery of a model lysosomal enzyme required in peripheral organs and brain: acid sphingomyelinase (ASM), deficient in types A-B Niemann Pick disease. We found similar binding of antibodies to both receptors under control conditions, with enhanced binding to activated endothelium for ICAM-1, yet only anti-TfR induced endocytosis efficiently. Contrarily, antibody-coated carriers showed enhanced binding, engulfment, and endocytosis for ICAM-1. In mice, anti-TfR enhanced brain targeting over anti-ICAM, with an opposite outcome in the lungs, while carriers enhanced ICAM-1 targeting over TfR in both organs. Both targeted carriers enhanced ASM delivery to the brain and lungs vs. free ASM, with greater enhancement for anti-ICAM carriers. Therefore, targeting TfR or ICAM-1 improves lysosomal enzyme delivery. Yet, TfR targeting may be more efficient for smaller conjugates or fusion proteins, while ICAM-1 targeting seems superior for multivalent carrier formulations.


Asunto(s)
Anticuerpos/metabolismo , Portadores de Fármacos/farmacocinética , Endocitosis/fisiología , Molécula 1 de Adhesión Intercelular/inmunología , Lisosomas/enzimología , Receptores de Transferrina/inmunología , Animales , Células CHO , Células Cultivadas , Materiales Biocompatibles Revestidos/farmacocinética , Cricetinae , Cricetulus , Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos , Terapia de Reemplazo Enzimático/métodos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/fisiología , Molécula 1 de Adhesión Intercelular/metabolismo , Enfermedades por Almacenamiento Lisosomal/terapia , Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Terapia Molecular Dirigida/métodos , Unión Proteica/fisiología , Receptores de Transferrina/metabolismo , Distribución Tisular
15.
Arterioscler Thromb Vasc Biol ; 32(5): 1178-85, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22328778

RESUMEN

OBJECTIVE: Engagement of intercellular adhesion molecule 1 (ICAM-1) on endothelial cells by ICAM-1-targeted carriers induces cell adhesion molecule-mediated endocytosis, providing intraendothelial delivery of therapeutics. This pathway differs from classical endocytic mechanisms and invokes aspects of endothelial signaling during inflammation. ICAM-1 interacts with Na(+)/H(+) exchanger NHE1 during endocytosis, but it is unclear how this regulates plasmalemma and cytoskeletal changes. We studied such aspects in this work. METHODS AND RESULTS: We used fluorescence and electron microscopy, inhibitors and knockout tools, cell culture, and mouse models. ICAM-1 engagement by anti-ICAM carriers induced sphingomyelin-enriched engulfment structures. Acid sphingomyelinase (ASM), an acidic enzyme that hydrolyzes sphingomyelin into ceramide (involved in plasmalemma deformability and cytoskeletal reorganization), redistributed to ICAM-1-engagement sites at ceramide-enriched areas. This induced actin stress fibers and carrier endocytosis. Inhibiting ASM impaired ceramide enrichment, engulfment structures, cytoskeletal reorganization, and carrier uptake, which was rescued by supplying this enzyme activity exogenously. Interfering with NHE1 rendered similar outcomes, suggesting that Na(+)/H(+) exchange might provide an acidic microenvironment for ASM at the plasmalemma. CONCLUSIONS: These findings are consistent with the ability of endothelial cells to internalize relatively large ICAM- 1--targeted drug carriers and expand our knowledge on the regulation of the sphingomyelin/ceramide pathway by the vascular endothelium.


Asunto(s)
Ceramidas/metabolismo , Portadores de Fármacos/metabolismo , Endocitosis/fisiología , Endotelio Vascular/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Células Cultivadas , Endotelio Vascular/ultraestructura , Humanos , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Transducción de Señal
16.
Drug Deliv Transl Res ; 13(12): 3077-3093, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37341882

RESUMEN

ASM deficiency in Niemann-Pick disease type A results in aberrant cellular accumulation of sphingomyelin, neuroinflammation, neurodegeneration, and early death. There is no available treatment because enzyme replacement therapy cannot surmount the blood-brain barrier (BBB). Nanocarriers (NCs) targeted across the BBB via transcytosis might help; yet, whether ASM deficiency alters transcytosis remains poorly characterized. We investigated this using model NCs targeted to intracellular adhesion molecule-1 (ICAM-1), transferrin receptor (TfR), or plasmalemma vesicle-associated protein-1 (PV1) in ASM-normal vs. ASM-deficient BBB models. Disease differentially changed the expression of all three targets, with ICAM-1 becoming the highest. Apical binding and uptake of anti-TfR NCs and anti-PV1 NCs were unaffected by disease, while anti-ICAM-1 NCs had increased apical binding and decreased uptake rate, resulting in unchanged intracellular NCs. Additionally, anti-ICAM-1 NCs underwent basolateral reuptake after transcytosis, whose rate was decreased by disease, as for apical uptake. Consequently, disease increased the effective transcytosis rate for anti-ICAM-1 NCs. Increased transcytosis was also observed for anti-PV1 NCs, while anti-TfR NCs remained unaffected. A fraction of each formulation trafficked to endothelial lysosomes. This was decreased in disease for anti-ICAM-1 NCs and anti-PV1 NCs, agreeing with opposite transcytosis changes, while it increased for anti-TfR NCs. Overall, these variations in receptor expression and NC transport resulted in anti-ICAM-1 NCs displaying the highest absolute transcytosis in the disease condition. Furthermore, these results revealed that ASM deficiency can differently alter these processes depending on the particular target, for which this type of study is key to guide the design of therapeutic NCs.


Asunto(s)
Enfermedad de Niemann-Pick Tipo A , Enfermedades de Niemann-Pick , Humanos , Enfermedad de Niemann-Pick Tipo A/tratamiento farmacológico , Portadores de Fármacos/química , Barrera Hematoencefálica/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo
17.
Adv Drug Deliv Rev ; 197: 114683, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36657645

RESUMEN

Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that constitute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their performance, and important items to consider for their clinical translation. Overall, polymeric nanoconstructs hold considerable promise to advance treatment for LSDs.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal , Polímeros , Humanos , Polímeros/metabolismo , Distribución Tisular , Enfermedades por Almacenamiento Lisosomal/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Lisosomas/metabolismo
18.
J Funct Biomater ; 14(9)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37754854

RESUMEN

Prior studies demonstrated that encapsulation in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) enhanced the delivery of enzymes used for replacement therapy (ERT) of lysosomal storage disorders (LSDs). This study examined how the copolymer lactide:glycolide ratio impacts encapsulation, physicochemical characteristics, stability, and release under lysosomal conditions. Hyaluronidase, deficient in mucopolysaccharidosis IX, was encapsulated in NPs synthesized using 50:50, 60:40, or 75:25 lactide:glycolide copolymers. All NPs had diameters compatible with cellular transport (≤168 nm) and polydispersity indexes (≤0.16) and ζ-potentials (≤-35 mV) compatible with colloidal stability. Yet, their encapsulation efficiency varied, with 75:25 NPs and 60:40 NPs having the lowest and highest EE, respectively (15% vs. 28%). Under lysosomal conditions, the 50:50 copolymer degraded fastest (41% in 1 week), as expected, and the presence of a targeting antibody coat did not alter this result. Additionally, 60:40 NPs destabilized fastest (<1 week) because of their smaller diameter, and 75:25 NPs did not destabilize in 4 weeks. All formulations presented burst release under lysosomal conditions (56-78% of the original load within 30 min), with 50:50 and 60:40 NPs releasing an additional small fraction after week 1. This provided 4 weeks of sustained catalytic activity, sufficient to fully degrade a substrate. Altogether, the 60:40 NP formulation is preferred given its higher EE, and 50:50 NPs represent a valid alternative, while the highest stability of 75:25 NPs may impair lysosomes. These results can guide future studies aiming to translate PLGA NP-based ERT for this and other LSDs.

19.
ACS Nano ; 17(14): 13121-13136, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37432926

RESUMEN

Ex vivo-loaded white blood cells (WBC) can transfer cargo to pathological foci in the central nervous system (CNS). Here we tested affinity ligand driven in vivo loading of WBC in order to bypass the need for ex vivo WBC manipulation. We used a mouse model of acute brain inflammation caused by local injection of tumor necrosis factor alpha (TNF-α). We intravenously injected nanoparticles targeted to intercellular adhesion molecule 1 (anti-ICAM/NP). We found that (A) at 2 h, >20% of anti-ICAM/NP were localized to the lungs; (B) of the anti-ICAM/NP in the lungs >90% were associated with leukocytes; (C) at 6 and 22 h, anti-ICAM/NP pulmonary uptake decreased; (D) anti-ICAM/NP uptake in brain increased up to 5-fold in this time interval, concomitantly with migration of WBCs into the injured brain. Intravital microscopy confirmed transport of anti-ICAM/NP beyond the blood-brain barrier and flow cytometry demonstrated complete association of NP with WBC in the brain (98%). Dexamethasone-loaded anti-ICAM/liposomes abrogated brain edema in this model and promoted anti-inflammatory M2 polarization of macrophages in the brain. In vivo targeted loading of WBC in the intravascular pool may provide advantages of coopting WBC predisposed to natural rapid mobilization from the lungs to the brain, connected directly via conduit vessels.


Asunto(s)
Sistemas de Liberación de Medicamentos , Pulmón , Ratones , Animales , Pulmón/metabolismo , Encéfalo/metabolismo , Liposomas/metabolismo , Leucocitos/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo
20.
J Pharmacol Exp Ther ; 340(3): 638-47, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22160267

RESUMEN

Intercellular adhesion molecule-1 (ICAM-1), a transmembrane glycoprotein expressed on activated endothelium and many other cells, represents a suitable target for delivery of drug nanocarriers (NCs) to disease areas. Numerous works have shown efficient targeting and intracellular transport of ICAM-1-targeted NCs, rendering significant therapeutic potential. This is the case for enzyme delivery for treatment of multitissue lysosomal storage disorders. However, those studies used formulations targeted to ICAM-1 by antibodies (anti-ICAM NCs). This poses an obstacle to preclinical evaluation of long-term treatment of such chronic maladies, caused by immunogenicity of foreign proteins administered to animals, compelling development of alternative strategies. In this work, we used radioisotope tracing, fluorescence and electron microscopy, and in vitro, cell cultures, and mouse models to evaluate polymer nanocarriers targeted to ICAM-1 by a 17-mer linear peptide derived from the ICAM-1-binding sequence of fibrinogen (γ3). Our results show that γ3 NCs target ICAM-1 with efficiency and specificity similar to that of anti-ICAM NCs, determined by using immobilized ICAM-1, native ICAM-1 expressed on endothelial cell cultures, and intravenous administration in mice. Furthermore, γ3 NCs are internalized by cells in culture and in vivo and transported to lysosomes via cell adhesion molecule-mediated endocytosis, without apparent disruption of cell junctions, similar to anti-ICAM counterparts. The degree of conservation of fibrinogen γ3 sequence and its cognate site on ICAM-1 among species (e.g., mouse, chimpanzee, and humans) reflects the interspecies targeting found for γ3 NCs, providing an avenue for exploring the translation of ICAM-1-targeting platforms in the preclinical and, perhaps, future clinical realm.


Asunto(s)
Células Endoteliales/metabolismo , Fibrinógeno/farmacología , Molécula 1 de Adhesión Intercelular/metabolismo , Fragmentos de Péptidos/farmacología , Polímeros/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico , Células Cultivadas , Portadores de Fármacos , Humanos , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Nanopartículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA