Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 472(7344): 481-5, 2011 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-21478870

RESUMEN

The type I interferon response protects cells against invading viral pathogens. The cellular factors that mediate this defence are the products of interferon-stimulated genes (ISGs). Although hundreds of ISGs have been identified since their discovery more than 25 years ago, only a few have been characterized with respect to antiviral activity. For most ISG products, little is known about their antiviral potential, their target specificity and their mechanisms of action. Using an overexpression screening approach, here we show that different viruses are targeted by unique sets of ISGs. We find that each viral species is susceptible to multiple antiviral genes, which together encompass a range of inhibitory activities. To conduct the screen, more than 380 human ISGs were tested for their ability to inhibit the replication of several important human and animal viruses, including hepatitis C virus, yellow fever virus, West Nile virus, chikungunya virus, Venezuelan equine encephalitis virus and human immunodeficiency virus type-1. Broadly acting effectors included IRF1, C6orf150 (also known as MB21D1), HPSE, RIG-I (also known as DDX58), MDA5 (also known as IFIH1) and IFITM3, whereas more targeted antiviral specificity was observed with DDX60, IFI44L, IFI6, IFITM2, MAP3K14, MOV10, NAMPT (also known as PBEF1), OASL, RTP4, TREX1 and UNC84B (also known as SUN2). Combined expression of pairs of ISGs showed additive antiviral effects similar to those of moderate type I interferon doses. Mechanistic studies uncovered a common theme of translational inhibition for numerous effectors. Several ISGs, including ADAR, FAM46C, LY6E and MCOLN2, enhanced the replication of certain viruses, highlighting another layer of complexity in the highly pleiotropic type I interferon system.


Asunto(s)
Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Interferón Tipo I/inmunología , Virus/inmunología , Animales , Línea Celular , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Biosíntesis de Proteínas , Replicación Viral , Virus/crecimiento & desarrollo
3.
Proc Natl Acad Sci U S A ; 109(36): 14610-5, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22908290

RESUMEN

Dengue virus (DENV) is a global disease threat for which there are no approved antivirals or vaccines. Establishing state-of-the-art screening systems that rely on fluorescent or luminescent reporters may accelerate the development of anti-DENV therapeutics. However, relatively few reporter DENV platforms exist. Here, we show that DENV can be genetically engineered to express a green fluorescent protein or firefly luciferase. Reporter viruses are infectious in vitro and in vivo and are sensitive to antiviral compounds, neutralizing antibodies, and interferons. Bioluminescence imaging was used to follow the dynamics of DENV infection in mice and revealed that the virus localized predominantly to lymphoid and gut-associated tissues. The high-throughput potential of reporter DENV was demonstrated by screening a library of more than 350 IFN-stimulated genes for antiviral activity. Several antiviral effectors were identified, and they targeted DENV at two distinct life cycle steps. These viruses provide a powerful platform for applications ranging from validation of vaccine candidates to antiviral discovery.


Asunto(s)
Virus del Dengue/genética , Dengue/fisiopatología , Genes Reporteros , Ingeniería Genética/métodos , Proteínas Fluorescentes Verdes/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Luciferasas de Luciérnaga/genética , Análisis de Varianza , Animales , Chlorocebus aethiops , Virus del Dengue/metabolismo , Citometría de Flujo , Biblioteca de Genes , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Luciferasas de Luciérnaga/metabolismo , Ratones , Plásmidos/genética , Células Vero
4.
J Immunother Cancer ; 6(1): 47, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29866156

RESUMEN

BACKGROUND: TGFß signaling plays a pleotropic role in tumor biology, promoting tumor proliferation, invasion and metastasis, and escape from immune surveillance. Inhibiting TGFß's immune suppressive effects has become of particular interest as a way to increase the benefit of cancer immunotherapy. Here we utilized preclinical models to explore the impact of the clinical stage TGFß pathway inhibitor, galunisertib, on anti-tumor immunity at clinically relevant doses. RESULTS: In vitro treatment with galunisertib reversed TGFß and regulatory T cell mediated suppression of human T cell proliferation. In vivo treatment of mice with established 4T1-LP tumors resulted in strong dose-dependent anti-tumor activity with close to 100% inhibition of tumor growth and complete regressions upon cessation of treatment in 50% of animals. This effect was CD8+ T cell dependent, and led to increased T cell numbers in treated tumors. Mice with durable regressions rejected tumor rechallenge, demonstrating the establishment of immunological memory. Consequently, mice that rejected immunogenic 4T1-LP tumors were able to resist rechallenge with poorly immunogenic 4 T1 parental cells, suggesting the development of a secondary immune response via antigen spreading as a consequence of effective tumor targeting. Combination of galunisertib with PD-L1 blockade resulted in improved tumor growth inhibition and complete regressions in colon carcinoma models, demonstrating the potential synergy when cotargeting TGFß and PD-1/PD-L1 pathways. Combination therapy was associated with enhanced anti-tumor immune related gene expression profile that was accelerated compared to anti-PD-L1 monotherapy. CONCLUSIONS: Together these data highlight the ability of galunisertib to modulate T cell immunity and the therapeutic potential of combining galunisertib with current PD-1/L1 immunotherapy.


Asunto(s)
Terapia Combinada/métodos , Inmunoterapia/métodos , Pirazoles/uso terapéutico , Quinolinas/uso terapéutico , Factor de Crecimiento Transformador beta/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Pirazoles/farmacología , Quinolinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA