Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Magn Reson Chem ; 62(7): 512-534, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38369696

RESUMEN

The discovery of new ceramic materials containing Ba-La-Cu oxides in 1986 that exhibited superconducting properties at high temperatures in the range of 35 K or higher, recognized with the Nobel Prize in Physics in 1987, opened a new world of opportunities for nuclear magnetic resonance (NMRs) and magnetic resonance imaging (MRIs) to move away from liquid cryogens. This discovery expands the application of high temperature superconducting (HTS) materials to fields beyond the chemical and medical industries, including electrical power grids, energy, and aerospace. The prototype 400-MHz cryofree HTS NMR spectrometer installed at Amgen's chemistry laboratory has been vital for a variety of applications such as structure analysis, reaction monitoring, and CASE-3D studies with RDCs. The spectrometer has been integrated with Amgen's chemistry and analytical workflows, providing pipeline project support in tandem with other Kinetic Analysis Platform technologies. The 400-MHz cryofree HTS NMR spectrometer, as the name implies, does not require liquid cryogens refills and has smaller footprint that facilitates installation into a chemistry laboratory fume hood, sharing the hood with a process chemistry reactor. Our evaluation of its performance for structural analysis with CASE-3D protocol and for reaction monitoring of Amgen's pipeline chemistry was successful. We envision that the HTS magnets would become part of the standard NMR and MRI spectrometers in the future. We believe that while the technology is being developed, there is room for all magnet options, including HTS, low temperature superconducting (LTS) magnets, and low field benchtop NMRs with permanent magnets, where utilization will be dependent on application type and costs.

2.
J Org Chem ; 87(4): 1977-1985, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-34101457

RESUMEN

The ipso nitration of aryl boronic acid derivatives has been developed using fuming nitric acid as the nitrating agent. This facile procedure provides efficient and chemoselective access to a variety of aromatic nitro compounds. While several activating agents and nitro sources have been reported in the literature for this synthetically useful transformation, this report demonstrates that these processes likely generate a common active reagent, anhydrous HNO3. Kinetic and mechanistic studies have revealed that the reaction order in HNO3 is >2 and indicate that the •NO2 radical is the active species.


Asunto(s)
Ácidos Borónicos , Ácido Nítrico , Nitratos
3.
J Org Chem ; 87(13): 8437-8444, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35679839

RESUMEN

An organocatalyzed, formal (3+3) cycloaddition reaction is described for the practical synthesis of substituted pyridines. Starting from readily available enamines and enal/ynal/enone substrates, the protocol affords tri- or tetrasubstituted pyridine scaffolds bearing various functional groups. This method was demonstrated on a 50 g scale, enabling the synthesis of 2-isopropyl-4-methylpyridin-3-amine, a raw material used for the manufacture of sotorasib. Mechanistic analysis using two-dimensional nuclear magnetic resonance (NMR) spectrometry revealed the transformation proceeds through the reversible formation of a stable reaction off-cycle species that precedes pyridine formation. In situ reaction progress kinetic analysis and control NMR studies were employed to better understand the role of FeCl3 and pyrrolidine hydrochloride in promoting the reaction.


Asunto(s)
Aldehídos , Cetonas , Aldehídos/química , Catálisis , Reacción de Cicloadición , Cetonas/química , Cinética , Piridinas/química
4.
J Am Chem Soc ; 142(8): 3873-3879, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32027134

RESUMEN

The evolution of homochirality via attrition-enhanced deracemization (AED) of enantiomorphic solids is carried out using molecules that differ only in the isotopic composition of a phenyl group positioned remote from the chiral center. Enantioenrichment consistently favors the enantiomorph containing a deuterated phenyl group over the protio or 13C version, and the protio version is consistently favored over the 13C version. While these isotopic compounds exhibit identical crystal structures and solubilities, the trend in deracemization correlates with melting points. Understanding the origin of this isotope bias provides fundamental clues about overcoming stochastic behavior to direct the stereochemical outcome in attrition-enhanced deracemization processes. The energy required for breaking symmetry with chiral bias is compared for this near-equilibrium AED process and the far-from-equilibrium Soai autocatalytic reaction. Implications for the origin of biological homochirality are discussed.


Asunto(s)
Isótopos/química , Estructura Molecular , Solubilidad , Estereoisomerismo
5.
Angew Chem Int Ed Engl ; 56(21): 5760-5764, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28444918

RESUMEN

The first catalytic kinetic resolution by N-sulfonylation is described. 2-Substituted indolines are resolved (s=2.6-19) using an atropisomeric 4-dimethylaminopyridine-N-oxide (4-DMAP-N-oxide) organocatalyst. Use of 2-isopropyl-4-nitrophenylsulfonyl chloride is critical to the stereodiscrimination and enables facile deprotection of the sulfonamide products with thioglycolic acid. A qualitative model that accounts for the stereodiscrimination is proposed.

6.
Acta Crystallogr E Crystallogr Commun ; 73(Pt 3): 372-374, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28316812

RESUMEN

1-Methylimidazole 3-N-oxide (NMI-O) crystallizes as a monohydrate, C4H6N2O·H2O, in the monoclinic space group P21 with Z' = 2 (mol-ecules A and B). The imidazole rings display a planar geometry (r.m.s. deviations = 0.0008 and 0.0002 Å) and are linked in the crystal structure into infinite zigzag strands of ⋯NMI-O(A)⋯OH2⋯NMI-O(B)⋯OH2⋯ units by O-H⋯O hydrogen bonds. These chains propagate along the b-axis direction of the unit cell.

8.
J Chem Biol ; 6(4): 175-84, 2013 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-24432133

RESUMEN

Signal transduction cascades in living systems are often controlled via post-translational phosphorylation and dephosphorylation of proteins. These processes are catalyzed in vivo by kinase and phosphatase enzymes, which consequently play an important role in many disease states, including cancer and immune system disorders. Current techniques for studying the phosphoproteome (isotopic labeling, chromatographic techniques, and phosphospecific antibodies), although undoubtedly very powerful, have yet to provide a generic tool for phosphoproteomic analysis despite the widespread utility such a technique would have. The use of small molecule organic catalysts that can promote selective phosphate esterification could provide a useful alternative to current state-of-the-art techniques for use in, e.g., the labeling and pull-down of phosphorylated proteins. This report reviews current techniques used for phosphoproteomic analysis and the recent use of small molecule peptide-based catalysts in phosphorylation reactions, indicating possible future applications for this type of catalyst as synthetic alternatives to phosphospecific antibodies for phosphoproteome analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA