Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(6): 967-979.e12, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35235768

RESUMEN

In multicellular organisms, cells actively sense and control their own population density. Synthetic mammalian quorum-sensing circuits could provide insight into principles of population control and extend cell therapies. However, a key challenge is reducing their inherent sensitivity to "cheater" mutations that evade control. Here, we repurposed the plant hormone auxin to enable orthogonal mammalian cell-cell communication and quorum sensing. We designed a paradoxical population control circuit, termed "Paradaux," in which auxin stimulates and inhibits net cell growth at different concentrations. This circuit limited population size over extended timescales of up to 42 days of continuous culture. By contrast, when operating in a non-paradoxical regime, population control became more susceptible to mutational escape. These results establish auxin as a versatile "private" communication system and demonstrate that paradoxical circuit architectures can provide robust population control.


Asunto(s)
Comunicación Celular , Transducción de Señal , Animales , Recuento de Células , Ingeniería Celular , Ácidos Indolacéticos , Mamíferos , Percepción de Quorum , Biología Sintética/métodos
2.
PLoS Comput Biol ; 18(4): e1009987, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35442944

RESUMEN

Biochemical interactions in systems and synthetic biology are often modeled with chemical reaction networks (CRNs). CRNs provide a principled modeling environment capable of expressing a huge range of biochemical processes. In this paper, we present a software toolbox, written in Python, that compiles high-level design specifications represented using a modular library of biochemical parts, mechanisms, and contexts to CRN implementations. This compilation process offers four advantages. First, the building of the actual CRN representation is automatic and outputs Systems Biology Markup Language (SBML) models compatible with numerous simulators. Second, a library of modular biochemical components allows for different architectures and implementations of biochemical circuits to be represented succinctly with design choices propagated throughout the underlying CRN automatically. This prevents the often occurring mismatch between high-level designs and model dynamics. Third, high-level design specification can be embedded into diverse biomolecular environments, such as cell-free extracts and in vivo milieus. Finally, our software toolbox has a parameter database, which allows users to rapidly prototype large models using very few parameters which can be customized later. By using BioCRNpyler, users ranging from expert modelers to novice script-writers can easily build, manage, and explore sophisticated biochemical models using diverse biochemical implementations, environments, and modeling assumptions.


Asunto(s)
Fenómenos Bioquímicos , Lenguajes de Programación , Modelos Biológicos , Programas Informáticos , Biología Sintética , Biología de Sistemas
3.
Phys Biol ; 17(5): 055002, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32217822

RESUMEN

Integral feedback control is commonly used in mechanical and electrical systems to achieve zero steady-state error following an external disturbance. Equivalently, in biological systems, a property known as robust perfect adaptation guarantees robustness to environmental perturbations and return to the pre-disturbance state. Previously, Briat et al proposed a biomolecular design for integral feedback control (robust perfect adaptation) called the antithetic feedback motif. The antithetic feedback controller uses the sequestration binding reaction of two biochemical species to record the integral of the error between the current and the desired output of the network it controls. The antithetic feedback motif has been successfully built using synthetic components in vivo in Escherichia coli and Saccharomyces cerevisiae cells. However, these previous synthetic implementations of antithetic feedback have not produced perfect integral feedback control due to the degradation and dilution of the two controller species. Furthermore, previous theoretical results have cautioned that integral control can only be achieved under stability conditions that not all antithetic feedback motifs necessarily fulfill. In this paper, we study how to design antithetic feedback motifs that simultaneously achieve good stability and small steady-state error properties, even as the controller species are degraded and diluted. We provide simple tuning guidelines to achieve flexible and practical synthetic biological implementations of antithetic feedback control. We use several tools and metrics from control theory to design antithetic feedback networks, paving the path for the systematic design of synthetic biological controllers.


Asunto(s)
Retroalimentación Fisiológica , Adaptación Fisiológica , Redes Reguladoras de Genes , Modelos Biológicos , Biología Sintética
4.
Arch Biochem Biophys ; 674: 108045, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31326518

RESUMEN

The T7 bacteriophage RNA polymerase (T7 RNAP) serves as a model for understanding RNA synthesis, as a tool for protein expression, and as an actuator for synthetic gene circuit design in bacterial cells and cell-free extract. T7 RNAP is an attractive tool for orthogonal protein expression in bacteria owing to its compact single subunit structure and orthogonal promoter specificity. Understanding the mechanisms underlying T7 RNAP regulation is important to the design of engineered T7-based transcription factors, which can be used in gene circuit design. To explore regulatory mechanisms for T7 RNAP-driven expression, we developed a rapid and cost-effective method to characterize engineered T7-based transcription factors using cell-free protein synthesis and an acoustic liquid handler. Using this method, we investigated the effects of the tetracycline operator's proximity to the T7 promoter on the regulation of T7 RNAP-driven expression. Our results reveal a mechanism for regulation that functions by interfering with the transition of T7 RNAP from initiation to elongation and validates the use of the method described here to engineer future T7-based transcription factors.


Asunto(s)
Bacteriófago T7/enzimología , ARN Polimerasas Dirigidas por ADN/metabolismo , Ingeniería Genética/métodos , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Proteínas Virales/metabolismo , Acústica , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Redes Reguladoras de Genes , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Regiones Operadoras Genéticas , Reacción en Cadena de la Polimerasa , Iniciación de la Transcripción Genética , Proteínas Virales/genética
5.
Anal Biochem ; 556: 70-77, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29936096

RESUMEN

Despite the significant role integral membrane proteins (IMPs) play in the drug discovery process, it remains extremely challenging to express, purify, and in vitro stabilize them for detailed biophysical analyses. Cell-free transcription-translation systems have emerged as a promising alternative for producing complex proteins, but they are still not a viable option for expressing IMPs due to improper post-translational folding of these proteins. We have studied key factors influencing in vitro folding of cell-free-expressed IMPs, particularly oligomeric proteins (i.e., ion channels). Using a chimeric ion channel, KcsA-Kv1.3 (K-K), as a model IMP, we have investigated several physiochemical determinants including artificial bilayer environments (i.e., lipid, detergent) for K-K in vitro stabilization. We observed that fusion of a 'superfolder' green fluorescent protein (sfGFP) to K-K as a protein expression reporter not only improves the protein yield, but surprisingly facilitates the K-K tetramer formation, probably by enhancing the solubility of monomeric K-K. Additionally, anionic lipids (i.e., DMPG) were found to be essential for the correct folding of cell-free-expressed monomeric K-K into tetramer, underscoring the importance of lipid-protein interaction in maintaining structural-functional integrity of ion channels. We further developed methods to integrate cell-free-expressed IMPs directly onto a biosensor chip. We employed a solid-supported lipid bilayer onto the surface plasmon resonance (SPR) chip to insert nascent K-K in a membrane. In a different approach, an anti-GFP-functionalized surface was used to capture in situ expressed K-K via its sfGFP tag. Interestingly, only the K-K-functionalized capture surface prepared by the latter strategy was able to interact with K-K's small binding partners. This generalizable approach can be further extended to other membrane proteins for developing direct binding assays involving small ligands.


Asunto(s)
Técnicas Biosensibles/métodos , Canal de Potasio Kv1.3 , Dispositivos Laboratorio en un Chip , Membrana Dobles de Lípidos , Biosíntesis de Proteínas , Sistema Libre de Células/química , Sistema Libre de Células/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Humanos , Canal de Potasio Kv1.3/sangre , Canal de Potasio Kv1.3/química , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Unión Proteica
6.
PLoS Biol ; 13(1): e1002042, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25626086

RESUMEN

Delineating the strategies by which cells contend with combinatorial changing environments is crucial for understanding cellular regulatory organization. When presented with two carbon sources, microorganisms first consume the carbon substrate that supports the highest growth rate (e.g., glucose) and then switch to the secondary carbon source (e.g., galactose), a paradigm known as the Monod model. Sequential sugar utilization has been attributed to transcriptional repression of the secondary metabolic pathway, followed by activation of this pathway upon depletion of the preferred carbon source. In this work, we demonstrate that although Saccharomyces cerevisiae cells consume glucose before galactose, the galactose regulatory pathway is activated in a fraction of the cell population hours before glucose is fully consumed. This early activation reduces the time required for the population to transition between the two metabolic programs and provides a fitness advantage that might be crucial in competitive environments.


Asunto(s)
Saccharomyces cerevisiae/metabolismo , Metabolismo de los Hidratos de Carbono , Simulación por Computador , Metabolismo Energético , Galactosa/fisiología , Regulación Fúngica de la Expresión Génica , Interacción Gen-Ambiente , Genes Fúngicos , Glucosa/fisiología , Modelos Biológicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Activación Transcripcional
7.
Mol Syst Biol ; 12(5): 869, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27193783

RESUMEN

Engineered bacterial sensors have potential applications in human health monitoring, environmental chemical detection, and materials biosynthesis. While such bacterial devices have long been engineered to differentiate between combinations of inputs, their potential to process signal timing and duration has been overlooked. In this work, we present a two-input temporal logic gate that can sense and record the order of the inputs, the timing between inputs, and the duration of input pulses. Our temporal logic gate design relies on unidirectional DNA recombination mediated by bacteriophage integrases to detect and encode sequences of input events. For an E. coli strain engineered to contain our temporal logic gate, we compare predictions of Markov model simulations with laboratory measurements of final population distributions for both step and pulse inputs. Although single cells were engineered to have digital outputs, stochastic noise created heterogeneous single-cell responses that translated into analog population responses. Furthermore, when single-cell genetic states were aggregated into population-level distributions, these distributions contained unique information not encoded in individual cells. Thus, final differentiated sub-populations could be used to deduce order, timing, and duration of transient chemical events.


Asunto(s)
Técnicas Biosensibles/métodos , Escherichia coli/genética , Bacteriófagos/enzimología , Ingeniería Genética , Humanos , Integrasas/metabolismo , Cadenas de Markov , Recombinación Genética , Biología Sintética
8.
Proc Natl Acad Sci U S A ; 111(13): E1182-91, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24639532

RESUMEN

Flies and other insects use vision to regulate their groundspeed in flight, enabling them to fly in varying wind conditions. Compared with mechanosensory modalities, however, vision requires a long processing delay (~100 ms) that might introduce instability if operated at high gain. Flies also sense air motion with their antennae, but how this is used in flight control is unknown. We manipulated the antennal function of fruit flies by ablating their aristae, forcing them to rely on vision alone to regulate groundspeed. Arista-ablated flies in flight exhibited significantly greater groundspeed variability than intact flies. We then subjected them to a series of controlled impulsive wind gusts delivered by an air piston and experimentally manipulated antennae and visual feedback. The results show that an antenna-mediated response alters wing motion to cause flies to accelerate in the same direction as the gust. This response opposes flying into a headwind, but flies regularly fly upwind. To resolve this discrepancy, we obtained a dynamic model of the fly's velocity regulator by fitting parameters of candidate models to our experimental data. The model suggests that the groundspeed variability of arista-ablated flies is the result of unstable feedback oscillations caused by the delay and high gain of visual feedback. The antenna response drives active damping with a shorter delay (~20 ms) to stabilize this regulator, in exchange for increasing the effect of rapid wind disturbances. This provides insight into flies' multimodal sensory feedback architecture and constitutes a previously unknown role for the antennae.


Asunto(s)
Antenas de Artrópodos/fisiología , Drosophila melanogaster/fisiología , Vuelo Animal/fisiología , Sensación/fisiología , Visión Ocular/fisiología , Viento , Animales , Fenómenos Biomecánicos , Retroalimentación Fisiológica , Femenino , Modelos Biológicos , Percepción Visual/fisiología , Alas de Animales/fisiología
9.
Methods ; 86: 60-72, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26022922

RESUMEN

A central goal of synthetic biology is to engineer cellular behavior by engineering synthetic gene networks for a variety of biotechnology and medical applications. The process of engineering gene networks often involves an iterative 'design-build-test' cycle, whereby the parts and connections that make up the network are built, characterized and varied until the desired network function is reached. Many advances have been made in the design and build portions of this cycle. However, the slow process of in vivo characterization of network function often limits the timescale of the testing step. Cell-free transcription-translation (TX-TL) systems offer a simple and fast alternative to performing these characterizations in cells. Here we provide an overview of a cell-free TX-TL system that utilizes the native Escherichia coli TX-TL machinery, thereby allowing a large repertoire of parts and networks to be characterized. As a way to demonstrate the utility of cell-free TX-TL, we illustrate the characterization of two genetic networks: an RNA transcriptional cascade and a protein regulated incoherent feed-forward loop. We also provide guidelines for designing TX-TL experiments to characterize new genetic networks. We end with a discussion of current and emerging applications of cell free systems.


Asunto(s)
Sistema Libre de Células , Redes Reguladoras de Genes , Biosíntesis de Proteínas , Transcripción Genética , Biotecnología/métodos , Escherichia coli , Regiones Promotoras Genéticas , ARN/química , ARN/genética
10.
Nucleic Acids Res ; 42(9): 6078-89, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24728988

RESUMEN

Biological organisms use their sensory systems to detect changes in their environment. The ability of sensory systems to adapt to static inputs allows wide dynamic range as well as sensitivity to input changes including fold-change detection, a response that depends only on fold changes in input, and not on absolute changes. This input scale invariance underlies an important strategy for search that depends solely on the spatial profile of the input. Synthetic efforts to reproduce the architecture and response of cellular circuits provide an important step to foster understanding at the molecular level. We report the bottom-up assembly of biochemical systems that show exact adaptation and fold-change detection. Using a malachite green aptamer as the output, a synthetic transcriptional circuit with the connectivity of an incoherent feed-forward loop motif exhibits pulse generation and exact adaptation. A simple mathematical model was used to assess the amplitude and duration of pulse response as well as the parameter regimes required for fold-change detection. Upon parameter tuning, this synthetic circuit exhibits fold-change detection for four successive rounds of two-fold input changes. The experimental realization of fold-change detection circuit highlights the programmability of transcriptional switches and the ability to obtain predictive dynamical systems in a cell-free environment for technological applications.


Asunto(s)
Técnicas Biosensibles , Algoritmos , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Simulación por Computador , ARN Polimerasas Dirigidas por ADN/química , Exorribonucleasas/química , Colorantes Fluorescentes/química , Regulación de la Expresión Génica , Modelos Biológicos , Colorantes de Rosanilina/química , Transcripción Genética , Proteínas Virales/química
11.
SIAM J Appl Dyn Syst ; 15(3): 1734-1752, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-29081723

RESUMEN

Delays in gene networks result from the sequential nature of protein assembly. However, it is unclear how models of gene networks that use delays should be modified when considering time-dependent changes in temperature. This is important, as delay is often used in models of genetic oscillators that can be entrained by periodic fluctuations in temperature. Here, we analytically derive the time dependence of delay distributions in response to time-varying temperature changes. We find that the resulting time-varying delay is nonlinearly dependent on parameters of the time-varying temperature such as amplitude and frequency, therefore, applying an Arrhenius scaling may result in erroneous conclusions. We use these results to examine a model of a synthetic gene oscillator with temperature compensation. We show that temperature entrainment follows from the same mechanism that results in temperature compensation. Under a common Arrhenius scaling alone, the frequency of the oscillator is sensitive to changes in the mean temperature but robust to changes in the frequency of a periodically time-varying temperature. When a mechanism for temperature compensation is included in the model, however, we show that the oscillator is entrained by periodically varying temperature even when maintaining insensitivity to the mean temperature.

12.
SIAM J Appl Dyn Syst ; 15(4): 1844-1873, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28936130

RESUMEN

The dynamics of systems with stochastically varying time delays are investigated in this paper. It is shown that the mean dynamics can be used to derive necessary conditions for the stability of equilibria of the stochastic system. Moreover, the second moment dynamics can be used to derive sufficient conditions for almost sure stability of equilibria. The results are summarized using stability charts that are obtained via semi-discretization. The theoretical methods are applied to simple gene regulatory networks where it is demonstrated that stochasticity in the delay can improve the stability of steady protein production.

13.
Proc Natl Acad Sci U S A ; 109(48): E3324-33, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-23150580

RESUMEN

Feedback loops are ubiquitous features of biological networks and can produce significant phenotypic heterogeneity, including a bimodal distribution of gene expression across an isogenic cell population. In this work, a combination of experiments and computational modeling was used to explore the roles of multiple feedback loops in the bimodal, switch-like response of the Saccharomyces cerevisiae galactose regulatory network. Here, we show that bistability underlies the observed bimodality, as opposed to stochastic effects, and that two unique positive feedback loops established by Gal1p and Gal3p, which both regulate network activity by molecular sequestration of Gal80p, induce this bimodality. Indeed, systematically scanning through different single and multiple feedback loop knockouts, we demonstrate that there is always a concentration regime that preserves the system's bimodality, except for the double deletion of GAL1 and the GAL3 feedback loop, which exhibits a graded response for all conditions tested. The constitutive production rates of Gal1p and Gal3p operate as bifurcation parameters because variations in these rates can also abolish the system's bimodal response. Our model indicates that this second loss of bistability ensues from the inactivation of the remaining feedback loop by the overexpressed regulatory component. More broadly, we show that the sequestration binding affinity is a critical parameter that can tune the range of conditions for bistability in a circuit with positive feedback established by molecular sequestration. In this system, two positive feedback loops can significantly enhance the region of bistability and the dynamic response time.


Asunto(s)
Retroalimentación , Galactosa/metabolismo , Reacción en Cadena de la Polimerasa , Saccharomyces cerevisiae/metabolismo , Procesos Estocásticos
14.
PLoS Comput Biol ; 9(2): e1002891, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23468601

RESUMEN

As animals move through the world in search of resources, they change course in reaction to both external sensory cues and internally-generated programs. Elucidating the functional logic of complex search algorithms is challenging because the observable actions of the animal cannot be unambiguously assigned to externally- or internally-triggered events. We present a technique that addresses this challenge by assessing quantitatively the contribution of external stimuli and internal processes. We apply this technique to the analysis of rapid turns ("saccades") of freely flying Drosophila melanogaster. We show that a single scalar feature computed from the visual stimulus experienced by the animal is sufficient to explain a majority (93%) of the turning decisions. We automatically estimate this scalar value from the observable trajectory, without any assumption regarding the sensory processing. A posteriori, we show that the estimated feature field is consistent with previous results measured in other experimental conditions. The remaining turning decisions, not explained by this feature of the visual input, may be attributed to a combination of deterministic processes based on unobservable internal states and purely stochastic behavior. We cannot distinguish these contributions using external observations alone, but we are able to provide a quantitative bound of their relative importance with respect to stimulus-triggered decisions. Our results suggest that comparatively few saccades in free-flying conditions are a result of an intrinsic spontaneous process, contrary to previous suggestions. We discuss how this technique could be generalized for use in other systems and employed as a tool for classifying effects into sensory, decision, and motor categories when used to analyze data from genetic behavioral screens.


Asunto(s)
Conducta Animal/fisiología , Toma de Decisiones/fisiología , Drosophila melanogaster/fisiología , Vuelo Animal/fisiología , Modelos Biológicos , Algoritmos , Animales , Biología Computacional , Femenino , Estimulación Luminosa , Movimientos Sacádicos
15.
ACS Synth Biol ; 13(1): 384-393, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38165130

RESUMEN

Microbial bioreporters hold promise for addressing challenges in medical and environmental applications. However, the difficulty in ensuring their stable persistence and function within the target environment remains a challenge. One strategy is to integrate information about the host strain and target environment into the design-build-test cycle of the bioreporter itself. Here, we present a case study for such an environmentally motivated design process by engineering the wheat commensal bacterium Pseudomonas synxantha 2-79 into a ratiometric bioreporter for phosphorus limitation. Comparative analysis showed that an exogenous P-responsive promoter outperformed its native counterparts. This reporter can selectively sense and report phosphorus limitation at plant-relevant concentrations of 25-100 µM without cross-activation from carbon or nitrogen limitation or high cell densities. Its performance is robust over a field-relevant pH range (5.8-8), and it responds only to inorganic phosphorus, even in the presence of common soil organic P. Finally, we used fluorescein-calibrated flow cytometry to assess whether the reporter's performance in shaken liquid culture predicts its performance in soil, finding that although the reporter is still functional at the bulk level, its variability in performance increases when grown in a soil slurry as compared to planktonic culture, with a fraction of the population not expressing the reporter proteins. Together, our environmentally aware design process provides an example of how laboratory bioengineering efforts can generate microbes with a greater promise to function reliably in their applied contexts.


Asunto(s)
Pseudomonas , Suelo , Pseudomonas/genética , Pseudomonas/metabolismo , Bacterias/metabolismo , Regiones Promotoras Genéticas , Nitrógeno/metabolismo , Carbono
16.
ACS Synth Biol ; 13(2): 530-537, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38319019

RESUMEN

In vitro transcription-translation (TX-TL) can enable faster engineering of biological systems. This speed-up can be significant, especially in difficult-to-transform chassis. This work shows the successful development of TX-TL systems using three soil-derived wild-type Pseudomonads known to promote plant growth: Pseudomonas synxantha, Pseudomonas chlororaphis, and Pseudomonas aureofaciens. All three species demonstrated multiple sonication, runoff, and salt conditions producing detectable protein synthesis. One of these new TX-TL systems, P. synxantha, demonstrated a maximum protein yield of 2.5 µM at 125 proteins per DNA template, a maximum protein synthesis rate of 20 nM/min, and a range of DNA concentrations with a linear correspondence with the resulting protein synthesis. A set of different constitutive promoters driving mNeonGreen expression were tested in TX-TL and integrated into the genome, showing similar normalized strengths for in vivo and in vitro fluorescence. This correspondence between the TX-TL-derived promoter strength and the in vivo promoter strength indicates that these lysate-based cell-free systems can be used to characterize and engineer biological parts without genomic integration, enabling a faster design-build-test cycle.


Asunto(s)
Biosíntesis de Proteínas , Transcripción Genética , Biosíntesis de Proteínas/genética , Sistema Libre de Células/metabolismo , Escherichia coli/genética , ADN/metabolismo
17.
Nat Commun ; 14(1): 2358, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095088

RESUMEN

Engineered consortia are a major research focus for synthetic biologists because they can implement sophisticated behaviors inaccessible to single-strain systems. However, this functional capacity is constrained by their constituent strains' ability to engage in complex communication. DNA messaging, by enabling information-rich channel-decoupled communication, is a promising candidate architecture for implementing complex communication. But its major advantage, its messages' dynamic mutability, is still unexplored. We develop a framework for addressable and adaptable DNA messaging that leverages all three of these advantages and implement it using plasmid conjugation in E. coli. Our system can bias the transfer of messages to targeted receiver strains by 100- to 1000-fold, and their recipient lists can be dynamically updated in situ to control the flow of information through the population. This work lays the foundation for future developments that further utilize the unique advantages of DNA messaging to engineer previously-inaccessible levels of complexity into biological systems.


Asunto(s)
Comunicación Celular , Escherichia coli , Humanos , Escherichia coli/genética , Plásmidos , ADN , Personal de Salud
18.
bioRxiv ; 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37986952

RESUMEN

Deep-learning models have been rapidly adopted by many fields, partly due to the deluge of data humanity has amassed. In particular, the petabases of biological sequencing data enable the unsupervised training of protein language models that learn the "language of life." However, due to their prohibitive size and complexity, contemporary deep-learning models are often unwieldy, especially for scientists with limited machine learning backgrounds. TRILL (TRaining and Inference using the Language of Life) is a platform for creative protein design and discovery. Leveraging several state-of-the-art models such as ESM-2, DiffDock, and RFDiffusion, TRILL allows researchers to generate novel proteins, predict 3-D structures, extract high-dimensional representations of proteins, functionally classify proteins and more. What sets TRILL apart is its ability to enable complex pipelines by chaining together models and effectively merging the capabilities of different models to achieve a sum greater than its individual parts. Whether using Google Colab with one GPU or a supercomputer with hundreds, TRILL allows scientists to effectively utilize models with millions to billions of parameters by using optimized training strategies such as ZeRO-Offload and distributed data parallel. Therefore, TRILL not only bridges the gap between complex deep-learning models and their practical application in the field of biology, but also simplifies the orchestration of these models into comprehensive workflows, democratizing access to powerful methods. Documentation: https://trill.readthedocs.io/en/latest/home.html.

19.
ACS Synth Biol ; 12(2): 511-523, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36715625

RESUMEN

We present a full-stack modeling, analysis, and parameter identification pipeline to guide the modeling and design of biological systems starting from specifications to circuit implementations and parametrizations. We demonstrate this pipeline by characterizing the integrase and excisionase activity in a cell-free protein expression system. We build on existing Python tools─BioCRNpyler, AutoReduce, and Bioscrape─to create this pipeline. For enzyme-mediated DNA recombination in a cell-free system, we create detailed chemical reaction network models from simple high-level descriptions of the biological circuits and their context using BioCRNpyler. We use Bioscrape to show that the output of the detailed model is sensitive to many parameters. However, parameter identification is infeasible for this high-dimensional model; hence, we use AutoReduce to automatically obtain reduced models that have fewer parameters. This results in a hierarchy of reduced models under different assumptions to finally arrive at a minimal ODE model for each circuit. Then, we run sensitivity analysis-guided Bayesian inference using Bioscrape for each circuit to identify the model parameters. This process allows us to quantify integrase and excisionase activity in cell extracts enabling complex-circuit designs that depend on accurate control over protein expression levels through DNA recombination. The automated pipeline presented in this paper opens up a new approach to complex circuit design, modeling, reduction, and parametrization.


Asunto(s)
ADN , Integrasas , Integrasas/genética , Teorema de Bayes , Sistema Libre de Células
20.
Nat Commun ; 13(1): 5393, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104365

RESUMEN

Layered feedback is an optimization strategy in feedback control designs widely used in engineering. Control theory suggests that layering multiple feedbacks could overcome the robustness-speed performance trade-off limit. In natural biological networks, genes are often regulated in layers to adapt to environmental perturbations. It is hypothesized layering architecture could also overcome the robustness-speed performance trade-off in genetic networks. In this work, we validate this hypothesis with a synthetic biomolecular network in living E. coli cells. We start with system dynamics analysis using models of various complexities to guide the design of a layered control architecture in living cells. Experimentally, we interrogate system dynamics under three groups of perturbations. We consistently observe that the layered control improves system performance in the robustness-speed domain. This work confirms that layered control could be adopted in synthetic biomolecular networks for performance optimization. It also provides insights into understanding genetic feedback control architectures in nature.


Asunto(s)
Escherichia coli , Retroalimentación Fisiológica , Adaptación Fisiológica , Escherichia coli/genética , Retroalimentación , Redes Reguladoras de Genes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA