Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
PLoS Biol ; 19(7): e3001302, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34252079

RESUMEN

Defects in mitochondrial function activate compensatory responses in the cell. Mitochondrial stress that is caused by unfolded proteins inside the organelle induces a transcriptional response (termed the "mitochondrial unfolded protein response" [UPRmt]) that is mediated by activating transcription factor associated with stress 1 (ATFS-1). The UPRmt increases mitochondrial protein quality control. Mitochondrial dysfunction frequently causes defects in the import of proteins, resulting in the accumulation of mitochondrial proteins outside the organelle. In yeast, cells respond to mistargeted mitochondrial proteins by increasing activity of the proteasome in the cytosol (termed the "unfolded protein response activated by mistargeting of proteins" [UPRam]). The presence and relevance of this response in higher eukaryotes is unclear. Here, we demonstrate that defects in mitochondrial protein import in Caenorhabditis elegans lead to proteasome activation and life span extension. Both proteasome activation and life span prolongation partially depend on ATFS-1, despite its lack of influence on proteasomal gene transcription. Importantly, life span prolongation depends on the fully assembled proteasome. Our data provide a link between mitochondrial dysfunction and proteasomal activity and demonstrate its direct relevance to mechanisms that promote longevity.


Asunto(s)
Caenorhabditis elegans/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Estrés Fisiológico , Animales , Caenorhabditis elegans/enzimología , Proteínas de Caenorhabditis elegans/genética , Activación Enzimática , Técnicas de Silenciamiento del Gen , Respuesta de Proteína Desplegada
2.
Pharmacol Res ; 163: 105248, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33065283

RESUMEN

The ubiquitin-proteasome system constitutes a major pathway for protein degradation in the cell. Therefore the crosstalk of this pathway with mitochondria is a major topic with direct relevance to many mitochondrial diseases. Proteasome dysfunction triggers not only protein toxicity, but also mitochondrial dysfunction. The involvement of proteasomes in the regulation of protein transport into mitochondria contributes to an increase in mitochondrial function defects. On the other hand, mitochondrial impairment stimulates reactive oxygen species production, which increases protein damage, and protein misfolding and aggregation leading to proteasome overload. Concurrently, mitochondrial dysfunction compromises cellular ATP production leading to reduced protein ubiquitination and proteasome activity. In this review we discuss the complex relationship and interdependence of the ubiquitin-proteasome system and mitochondria. Furthermore, we describe pharmacological inhibition of proteasome activity as a novel strategy to treat a group of mitochondrial diseases.


Asunto(s)
Mitocondrias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Humanos , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/metabolismo , Péptidos/metabolismo
3.
Neurotox Res ; 42(1): 13, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38332435

RESUMEN

Hypoxia plays a significant role in the development of various cerebral diseases, many of which are associated with the potential risk of recurrence due to mitochondrial damage. Conventional drug treatments are not always effective for hypoxia-related brain diseases, necessitating the exploration of alternative compounds. In this study, we investigated the potential of diphenyl diselenide [(PhSe)2] to ameliorate locomotor impairments and mitigate brain mitochondrial dysfunction in zebrafish subjected to hypoxia. Additionally, we explored whether these improvements could confer resistance to recurrent hypoxia. Through a screening process, an appropriate dose of (PhSe)2 was determined, and animals exposed to hypoxia received a single intraperitoneal injection of 100 mg/kg of the compound or vehicle. After 1 h from the injection, evaluations were conducted on locomotor deficits, (PhSe)2 content, mitochondrial electron transport system, and mitochondrial viability in the brain. The animals were subsequently exposed to recurrent hypoxia to assess the latency time to hypoxia symptoms. The findings revealed that (PhSe)2 effectively crossed the blood-brain barrier, attenuated locomotor deficits induced by hypoxia, and improved brain mitochondrial respiration by modulating complex III. Furthermore, it enhanced mitochondrial viability in the telencephalon, contributing to greater resistance to recurrent hypoxia. These results demonstrate the beneficial effects of (PhSe)2 on both hypoxia and recurrent hypoxia, with cerebral mitochondria being a critical target of its action. Considering the involvement of brain hypoxia in numerous pathologies, (PhSe)2 should be further tested to determine its effectiveness as a potential treatment for hypoxia-related brain diseases.


Asunto(s)
Encefalopatías , Compuestos de Organoselenio , Animales , Pez Cebra , Mitocondrias , Derivados del Benceno/farmacología , Derivados del Benceno/uso terapéutico , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/uso terapéutico , Hipoxia/tratamiento farmacológico
4.
J Cell Biol ; 223(5)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38530280

RESUMEN

Most mitochondrial proteins originate from the cytosol and require transport into the organelle. Such precursor proteins must be unfolded to pass through translocation channels in mitochondrial membranes. Misfolding of transported proteins can result in their arrest and translocation failure. Arrested proteins block further import, disturbing mitochondrial functions and cellular proteostasis. Cellular responses to translocation failure have been defined in yeast. We developed the cell line-based translocase clogging model to discover molecular mechanisms that resolve failed import events in humans. The mechanism we uncover differs significantly from these described in fungi, where ATPase-driven extraction of blocked protein is directly coupled with proteasomal processing. We found human cells to rely primarily on mitochondrial factors to clear translocation channel blockage. The mitochondrial membrane depolarization triggered proteolytic cleavage of the stalled protein, which involved mitochondrial protease OMA1. The cleavage allowed releasing the protein fragment that blocked the translocase. The released fragment was further cleared in the cytosol by VCP/p97 and the proteasome.


Asunto(s)
Metaloendopeptidasas , Mitocondrias , Transporte de Proteínas , Humanos , Endopeptidasas , Mitocondrias/metabolismo , Complejo de la Endopetidasa Proteasomal , Proteolisis , Metaloendopeptidasas/metabolismo
5.
Neurochem Res ; 37(1): 205-13, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21935728

RESUMEN

This study investigated the effects of acute and chronic hyperprolinemia on glutamate uptake, as well as some mechanisms underlying the proline effects on glutamatergic system in rat cerebral cortex. The protective role of guanosine on effects mediated by proline was also evaluated. Results showed that acute and chronic hyperprolinemia reduced glutamate uptake, Na(+), K(+)-ATPase activity, ATP levels and increased lipoperoxidation. GLAST and GLT-1 immunocontent were increased in acute, but not in chronic hyperprolinemic rats. Our data suggest that the effects of proline on glutamate uptake may be mediated by lipid peroxidation and disruption of Na(+), K(+)-ATPase activity, but not by decreasing in glutamate transporters. This probably induces excitotoxicity and subsequent energy deficit. Guanosine was effective to prevent most of the effects promoted by proline, reinforcing its modulator role in counteracting the glutamate toxicity. However, further studies are needed to assess the modulatory effects of guanosine on experimental hyperprolinemia.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/fisiopatología , Encéfalo/fisiopatología , Ácido Glutámico/metabolismo , Guanosina/farmacología , Homeostasis , Fármacos Neuroprotectores/farmacología , 1-Pirrolina-5-Carboxilato Deshidrogenasa/deficiencia , Adenosina Trifosfato/metabolismo , Animales , Western Blotting , Prolina Oxidasa/deficiencia , Ratas , Ratas Wistar , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
6.
Neurotoxicology ; 88: 57-64, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34728274

RESUMEN

High ethanol (EtOH) consumption is a serious condition that induces tremors, alcoholic psychosis, and delirium, being considered a public health problem worldwide. Prolonged EtOH exposure promotes neurodegeneration, affecting several neurotransmitter systems and transduction signaling pathways. Glutamate is the major excitatory amino acid in the central nervous system (CNS) and the extracellular glutamatergic tonus is controlled by glutamate transporters mostly located in astrocytes. Here, we explore the effects of prolonged EtOH exposure on the glutamatergic uptake system and its relationship with astroglial markers (GFAP and S100B), neuroinflammation (IL-1ß and TNF-α), and brain derived neurotrophic factor (BDNF) levels in the CNS of adult zebrafish. Animals were exposed to 0.5% EtOH for 7, 14, and 28 days continuously. Glutamate uptake was significantly decreased after 7 and 14 days of EtOH exposure, returning to baseline levels after 28 days of exposure. No alterations were observed in crucial enzymatic activities linked to glutamate uptake, like Na,K-ATPase or glutamine synthetase. Prolonged EtOH exposure increased GFAP, S100B, and TNF-α levels after 14 days. Additionally, increased BDNF mRNA levels were observed after 14 and 28 days of EtOH exposure, while BDNF protein levels increased only after 28 days. Collectively, our data show markedly brain astroglial, neuroinflammatory and neurotrofic responses after an initial impairment of glutamate uptake following prolonged EtOH exposure. This neuroplasticity event could play a key role in the modulatory effect of EtOH on glutamate uptake after 28 days of continuous exposure.


Asunto(s)
Encéfalo/efectos de los fármacos , Etanol/efectos adversos , Gliosis/inducido químicamente , Ácido Glutámico/metabolismo , Enfermedades Neuroinflamatorias/inducido químicamente , Animales , Encéfalo/metabolismo , Encéfalo/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Femenino , Gliosis/patología , Interleucina-1beta/metabolismo , Masculino , Enfermedades Neuroinflamatorias/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
7.
Mol Biol Cell ; 33(4): ar29, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35080992

RESUMEN

Assembly of the dimeric complex III (CIII2) in the mitochondrial inner membrane is an intricate process in which several accessory proteins are involved as assembly factors. Despite numerous studies, this process has yet to be fully understood. Here we report the identification of human OCIAD2 (ovarian carcinoma immunoreactive antigen-like protein 2) as an assembly factor for CIII2. OCIAD2 was found to be deregulated in several carcinomas and also in some neurogenerative disorders; however, its nonpathological role had not been elucidated.  We have shown that OCIAD2 localizes to mitochondria and interacts with electron transport chain (ETC) proteins. Complete loss of OCIAD2 using gene editing in HEK293 cells resulted in abnormal mitochondrial morphology, a substantial decrease of both CIII2 and supercomplex III2+IV, and a reduction in CIII enzymatic activity. Identification of OCIAD2 as a protein required for assembly of functional CIII2 provides a new insight into the biogenesis and architecture of the ETC. Elucidating the mechanism of OCIAD2 action is important both for the understanding of cellular metabolism and for an understanding of its role in malignant transformation.


Asunto(s)
Carcinoma , Neoplasias Ováricas , Carcinoma/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Femenino , Células HEK293 , Humanos , Mitocondrias/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/metabolismo
8.
Metab Brain Dis ; 26(1): 61-7, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21287399

RESUMEN

In the present study we investigate the effect of homocysteine on glutamate uptake, Na+,K+-ATPase, enzymatic antioxidant defenses, as well as reactive species levels in hippocampus of rats. The influence of vitamin C, a classic antioxidant, on the effects elicited by homocysteine was also tested. Results showed that chronic hyperhomocysteinemia decreased glutamate uptake and the activities of Na+,K+-ATPase, catalase and superoxide dismutase in hippocampus of rats. Reactive species levels were increased by chronic homocysteine administration. Concomitant administration of vitamin C significantly prevented these alterations caused by homocysteine. According to our results, it seems possible to suggest that the reduction in glutamate uptake and Na+,K+-ATPase activity may be mediated by oxidative stress, since vitamin C prevented these effects. We suggest that the administration of antioxidants should be considered as an adjuvant therapy to specific diet in homocystinuria.


Asunto(s)
Ácido Ascórbico/farmacología , Ácido Glutámico/metabolismo , Homocisteína/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Antioxidantes/farmacología , Catalasa/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Homocistinuria/terapia , Hiperhomocisteinemia/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
9.
Behav Processes ; 181: 104278, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33186621

RESUMEN

Several studies have used zebrafish to investigate the effects of environmental enrichment on behavior and physiology. However, to date there are no studies evaluating the behavioral responses, such as habituation and exploration, of enriched-housed zebrafish when they are submitted to novelty paradigms. The present work was, therefore, designed to evaluate the habituation and exploratory responses of zebrafish exposed to enriched- (EE) and non-enriched (NE) environments when they face novelty. Adult wild-type zebrafish were used. Three different enriched contexts were designed. In Context 1, zebrafish was exposed to enrichment during 7 days, which reduced their total distance traveled in novel tank and social preference tests in comparison to the non-enriched animals. In Context 2, animals were exposed to same enrichment during 14 days. EE exposure did not alter the behavioral responses of zebrafish compared to NE. In Context 3, fish were exposed to enrichment during 14 days, with changing the enriching elements at day 8. Similarly to Context 1, total distance traveled was reduced by EE exposure when compared to NE. Our results suggest a modulatory effect of EE on adult zebrafish locomotion that may be dependent on the time of exposure and on the physical structure of the enriched environment.


Asunto(s)
Conducta Animal , Pez Cebra , Animales , Conducta Exploratoria , Locomoción
10.
Neurotoxicology ; 78: 152-160, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32173352

RESUMEN

Fetal alcohol spectrum disorders (FASD) describe a wide range of ethanol-induced developmental disabilities, including craniofacial dysmorphology, and neurochemical and behavioral impairments. Zebrafish has become a popular animal model to evaluate the long-lasting effects of, both, severe and milder forms of FASD, including alterations to neurotransmission. Glutamate is one of the most affected neurotransmitter systems in ethanol-induced developmental disabilities. Therefore, the aim of the present study was to evaluate the functionality of the glutamatergic neurotransmitter system in an adult zebrafish FASD model. Zebrafish larvae (24 h post-fertilization) were exposed to ethanol (0.1 %, 0.25 %, 0.5 %, and 1%) for 2 h. After 4 months, the animals were euthanized and their brains were removed. The following variables were measured: glutamate uptake, glutamate binding, glutamine synthetase activity, Na+/K + ATPase activity, and high-resolution respirometry. Embryonic ethanol exposure reduced Na+-dependent glutamate uptake in the zebrafish brain. This reduction was positively modulated by ceftriaxone treatment, a beta-lactam antibiotic that promotes the expression of the glutamate transporter EAAT2. Moreover, the 0.5 % and 1% ethanol groups demonstrated reduced glutamate binding to brain membranes and decreased Na+/K + ATPase activity in adulthood. In addition, ethanol reduced glutamine synthetase activity in the 1% EtOH group. Embryonic ethanol exposure did not alter the immunocontent of the glutamate vesicular transporter VGLUT2 and the mitochondrial energetic metabolism of the brain in adulthood. Our results suggest that embryonic ethanol exposure may cause significant alterations in glutamatergic neurotransmission in the adult zebrafish brain.


Asunto(s)
Etanol/toxicidad , Trastornos del Espectro Alcohólico Fetal/fisiopatología , Ácido Glutámico/metabolismo , Transmisión Sináptica/efectos de los fármacos , Animales , Antibacterianos/administración & dosificación , Ceftriaxona/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Glutamato-Amoníaco Ligasa/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Pez Cebra
11.
Neurotoxicol Teratol ; 75: 106822, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31421226

RESUMEN

Binge drinking is defined as the infrequent consumption of excessive doses of alcohol in a short period of time. Zebrafish is a reliable model to investigate ethanol consumption impact on the CNS, including reward signaling like dopaminergic neurotransmission system. The aim of this study was to evaluate zebrafish brain dopaminergic parameters after intermittent weekly ethanol exposure (WEE), which mimics binge drinking. Thus, adult zebrafish were exposed to ethanol (1.4% v/v) for 30 min, once a week for three consecutive weeks. The groups were divided according to different time points after the third exposure and name as follow: immediately (WEEI), two days (WEE-2), and nine days (WEE-9) after last exposure to ethanol. Brain dopaminergic function was assessed by the activity of the dopamine transporters (DAT); monoamine oxidase (MAO) activity; dopamine and noradrenaline levels by chromatography. The WEE-I and WEE-2 groups presented a significant increase in DAT activity. The MAO activity was decreased for WEE-2 and WEE-9 groups. The WEE-2 and WEE-9 groups presented an increase in brain dopamine levels, while noradrenaline levels were not affected. Therefore, dopaminergic parameters are still altered two and nine days after the last ethanol exposure in this binge experimental model, resulting in a modulatory event in this neurotransmission pathway.


Asunto(s)
Encéfalo/patología , Depresores del Sistema Nervioso Central/toxicidad , Neuronas Dopaminérgicas/efectos de los fármacos , Etanol/toxicidad , Animales , Química Encefálica/efectos de los fármacos , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Neuronas Dopaminérgicas/patología , Masculino , Monoaminooxidasa/metabolismo , Norepinefrina/metabolismo , Transmisión Sináptica/efectos de los fármacos , Pez Cebra
12.
Behav Brain Res ; 352: 62-69, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28882694

RESUMEN

Fetal Alcohol Spectrum Disorders (FASD) is a syndrome characterized by neurological and behavioral impairments. A recently discovered hallmark of FASD is impaired social behavior. Avoidance of social interaction typical of FASD may be the result of increased anxiety. Previously, the zebrafish was successfully used to model embryonic alcohol induced social abnormalities. Here, we analyzed both anxiety and social responses using a zebrafish FASD model, in adult fish. We exposed zebrafish embryos to low concentrations of ethanol (0.1%; 0.25%; 0.5% and 1% v/v) for 2h at, 24h post-fertilization, to mimic the most prevalent milder FASD cases, and investigated the ensuing alterations in adult, 4-month-old, zebrafish. We studied social interaction in the social preference task and anxiety in the novel tank task. We observed an ethanol dose dependent reduction of time spend in the conspecific zone compared to control, corroborating prior findings. We also found significant changes in the novel tank (e.g. increased bottom dwell time, increased distance to top) suggesting elevated anxiety to control, but we also found, using an anxiolytic drug buspirone, that reduction of anxiety is associated with reduced shoaling. Our results confirm that embryonic alcohol exposure disrupts social behavior, and also show that its effects on anxiety related phenotypes may be genotype, alcohol administration method, experimental procedure and test-context dependent.


Asunto(s)
Ansiedad/etiología , Trastornos del Espectro Alcohólico Fetal/psicología , Conducta Social , Animales , Ansiolíticos/farmacología , Ansiedad/tratamiento farmacológico , Reacción de Prevención/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Buspirona/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Embrión no Mamífero/efectos de los fármacos , Etanol/toxicidad , Femenino , Masculino , Distribución Aleatoria , Pez Cebra
13.
Neurotoxicology ; 66: 45-52, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29545205

RESUMEN

Several works have demonstrated that status epilepticus (SE) induced-neurodegeneration appears to involve an overactivation of N-methyl-d-aspartate receptors and treatment with high-affinity NMDAR antagonists is neuroprotective against this brain damage. However, these compounds display undesirable side effects for patients since they block physiological NMDA receptor dependent-activity. In this context, memantine (MN), a well tolerable low-affinity NMDAR channel blocker, will be a promising alternative, since it does not compromise the physiological role of NMDA receptors on synaptic transmission. The aim of the present study was to investigate if MN could attenuate seizure severity and neuronal cell death caused by SE induced early in life. Wistar rats (15 days old; n = 6-8 per group) received memantine (20 mg/kg i.p.) in six different treatments: 6 and 3 h before SE onset; concomitant with pilocarpine; 15min and 1h after SE onset; and four consecutive administrations (15 min, 6 h, 12 h, and 18 h) after pilocarpine injection. Neurodegeneration was quantified by fluoro-jade C staining. Treatment with memantine increase latency to SE onset only in groups treated 3 h before or concomitant with pilocarpine. In CA1 hippocampal subfield, memantine significantly reduced neurodegeneration at the following times: 3 h prior SE-onset, concomitant with pilocarpine, and 15 min after pilocarpine injection. For amygdala and thalamus, all post-SE onset treatments were able to decrease neurodegeneration. In conclusion, the present study showed that MN was neuroprotective against SE-induced neuronal death and this neuroprotection appears to be time- and region-dependent.


Asunto(s)
Encéfalo/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Memantina/administración & dosificación , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Estado Epiléptico/patología , Estado Epiléptico/prevención & control , Animales , Encéfalo/patología , Femenino , Cloruro de Litio/administración & dosificación , Masculino , Neuronas/patología , Pilocarpina/administración & dosificación , Ratas Wistar , Estado Epiléptico/inducido químicamente
14.
Epilepsy Res ; 139: 171-179, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29371041

RESUMEN

Valproic acid (VPA) is an antiepileptic drug (AED) that has the broadest spectrum across all types of seizures and epileptic syndromes. Unfortunately, approximately 30% of epileptic patients are refractory to the classical AED. Metal ions have been frequently incorporated into pharmaceuticals for therapeutic or diagnostic purposes and research. In this preliminary study, we assess the embryo toxicity and the anticonvulsant activity of 4 novel metallodrugs, with Zn+2 and Cu+2, a derivative of valproic acid and the N-donor ligand in an adult zebrafish epileptic seizure model induced by pentylenetetrazole. The most toxic complex was [Cu(Valp)2Bipy], in which the LC50 was 0.22 µM at 48 h post fertilization (HPF) and 0.12 µM at 96 HPF, followed by [Zn(Valp)2Bipy] (LC50 = 10 µM). These same metallodrugs ([Cu(Valp)2Bipy] 10 mM/kg and [Zn(Valp)2Bipy] 30 mM and 100 mM/kg) displayed superior activity, thus reducing the seizure intensity by approximately 20 times compared to sodium valproate (175 mM/kg). Overall, [Cu(Valp)2Bipy] showed the best anticonvulsant effects. However, because of the toxicity of copper, [Zn(Valp)2Bipy] is considered the most promising anticonvulsant for future studies.


Asunto(s)
Anticonvulsivantes/farmacología , Cobre/farmacología , Teratógenos/farmacología , Ácido Valproico/farmacología , Compuestos de Zinc/farmacología , Animales , Anticonvulsivantes/química , Anticonvulsivantes/toxicidad , Cobre/química , Cobre/toxicidad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/patología , Epilepsia/tratamiento farmacológico , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Compuestos Organometálicos/toxicidad , Pentilenotetrazol , Datos Preliminares , Convulsiones/tratamiento farmacológico , Teratógenos/química , Teratógenos/toxicidad , Ácido Valproico/química , Ácido Valproico/toxicidad , Pez Cebra , Compuestos de Zinc/química , Compuestos de Zinc/toxicidad
15.
Neurotoxicology ; 67: 305-312, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29680360

RESUMEN

The development of new antiepileptic drugs is a high-risk/high-cost research field, which is made even riskier if the behavioral epileptic seizure profile is the unique approach on which the development is based. In order to increase the effectiveness of the screening conducted in the zebrafish model of status epilepticus (SE), the evaluation of neurochemical markers of SE would be of great relevance. Epilepsy is associated with changes in the glutamatergic system, and glutamate uptake is one of the critical parameters of this process. Therefore, we evaluated the levels of glutamate uptake in the zebrafish brain and analyzed its correlation with the progression of behavioral changes in zebrafish at different times after the administration of kainic acid (5 mg/kg). The results showed that the zebrafish suffered with lethargy while swimming for up to 72 h after SE, had reduced levels of GFAP cells 12 h after SE, reduced levels of S100B up to 72 h after SE, and reduced levels of glutamate uptake in the forebrain between 3 h and 12 h after SE. The forebrain region of adult zebrafish after SE present similar changes to the neurochemical limbic alterations that are seen in rodent models of SE. This study demonstrated that there is a time window in which to use the KA zebrafish model of SE to explore some of the known neurochemical alterations that have been observed in rodent models of epilepsy and epileptic human patients.


Asunto(s)
Ácido Glutámico/metabolismo , Ácido Kaínico/toxicidad , Locomoción/efectos de los fármacos , Prosencéfalo/metabolismo , Estado Epiléptico/inducido químicamente , Estado Epiléptico/metabolismo , Factores de Edad , Animales , Locomoción/fisiología , Masculino , Prosencéfalo/efectos de los fármacos , Pez Cebra
16.
Neurosci Lett ; 636: 265-269, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27838452

RESUMEN

Ethanol is a widely consumed substance throughout the world. During development it can substantially damage the human fetus, whereas the developing brain is particularly vulnerable. The brain damage induced by prenatal alcohol exposure may lead to a variety of long-lasting behavioral and neurochemical problems. However, there are no data concerning the effects of developmental ethanol exposure on the glutamatergic system, where extracellular glutamate acts as signaling molecule. Here we investigated the effect of ethanol exposure for 2h (concentrations of 0.0%, 0.1%, 0.25%, 0.50%, and 1.00%) in embryos at 24h post-fertilization (hpf) by measuring the functionality of glutamate transporters in the brain of adult (4 months) zebrafish. However, ethanol 0.1%, 0.25% and 0.50% decreased transport of glutamate to 81.96%, 60.65% and 45.91% respectively, when compared with the control group. Interestingly, 1.00% was able to inhibit the transport activity to 68.85%. In response to the embryonic alcohol exposure, we found impairment in the function of cerebral glutamate transport in adult fish, contributing to long-term alteration in the homeostasis glutamatergic signaling.


Asunto(s)
Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Etanol/farmacología , Ácido Glutámico/metabolismo , Animales , Transporte Biológico , Encéfalo/metabolismo , Embrión no Mamífero/metabolismo , Factores de Tiempo , Pez Cebra/embriología
17.
Mol Neurobiol ; 53(1): 200-209, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25421208

RESUMEN

Hypermethioninemic patients may exhibit different neurological dysfunctions, and the mechanisms underlying these pathologies remain obscure. Glutamate and ATP are important excitatory neurotransmitters co-released at synaptic clefts, and whose activities are intrinsically related. Adenosine-the final product of ATP breakdown-is also an important neuromodulator. Here, we investigated the effects of long-term (7-day) exposure to 1.5 or 3 mM methionine (Met) on glutamate uptake in brain tissues (telencephalon, optic tectum, and cerebellum) and on ATP, ADP, and AMP catabolism by ecto-nucleotidases found in brain membrane samples, using a zebrafish model. Also, we evaluated the expression of ecto-nucleotidase (ntdp1, ntdp2mg, ntdp2mq, ntdp2mv, ntdp3, and nt5e) and adenosine receptor (adora1, adora2aa, adora2ab, adora2b) genes in the brain of zebrafish exposed to Met. In animals exposed to 3.0 mM Met, glutamate uptake in the telencephalon decreased significantly. Also, ATP and ADP (but not AMP) catabolism decreased significantly at both Met concentrations tested. The messenger RNA (mRNA) levels of ntpd genes and of the adenosine receptors adora1 and adora2aa increased significantly after Met exposure. In contrast, adora2ab mRNA levels decreased after Met exposure. Our data suggest that glutamate and ATP accumulate at synaptic clefts after Met exposure, with potential detrimental effects to the nervous system. This phenomenon might explain, at least in part, the increased susceptibility of hypermethioninemic patients to neurological symptoms.


Asunto(s)
Adenosina Trifosfato/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Ácido Glutámico/metabolismo , Metionina/farmacología , Adenosina/metabolismo , Adenosina Trifosfatasas/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Animales , Glicina N-Metiltransferasa/deficiencia , Hidrólisis/efectos de los fármacos , Pez Cebra
18.
Mol Neurobiol ; 53(4): 2384-96, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26001762

RESUMEN

The understanding of the consequences of chronic treatment with methylphenidate is very important since this psychostimulant is extensively prescribed to preschool age children, and little is known about the mechanisms underlying the persistent changes in behavior and neuronal function related with the use of methylphenidate. In this study, we initially investigate the effect of early chronic treatment with methylphenidate on amino acids profile in cerebrospinal fluid and prefrontal cortex of juvenile rats, as well as on glutamatergic homeostasis, Na(+),K(+)-ATPase function, and balance redox in prefrontal cortex of rats. Wistar rats at early age received intraperitoneal injections of methylphenidate (2.0 mg/kg) or an equivalent volume of 0.9% saline solution (controls), once a day, from the 15th to the 45th day of age. Twenty-four hours after the last injection, the animals were decapitated and the cerebrospinal fluid and prefrontal cortex were obtained. Results showed that methylphenidate altered amino acid profile in cerebrospinal fluid, increasing the levels of glutamate. Glutamate uptake was decreased by methylphenidate administration, but GLAST and GLT-1 were not altered by this treatment. In addition, the astrocyte marker GFAP was not altered by MPH. The activity and immunocontent of catalytic subunits (α1, α2, and α3) of Na(+),K(+)-ATPase were decreased in prefrontal cortex of rats subjected to methylphenidate treatment, as well as changes in α1 and α2 gene expression of catalytic α subunits of Na(+),K(+)-ATPase were also observed. CAT activity was increased and SOD/CAT ratio and sulfhydryl content were decreased in rat prefrontal cortex. Taken together, our results suggest that chronic treatment with methylphenidate at early age induces excitotoxicity, at least in part, due to inhibition of glutamate uptake probably caused by disturbances in the Na(+),K(+)-ATPase function and/or in protein damage observed in the prefrontal cortex.


Asunto(s)
Ácido Glutámico/líquido cefalorraquídeo , Homeostasis/efectos de los fármacos , Metilfenidato/farmacología , Corteza Prefrontal/metabolismo , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Antígenos Nucleares/metabolismo , Dominio Catalítico , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica , Masculino , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo , Estrés Oxidativo/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/patología , Ratas Wistar , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
19.
Toxicol Rep ; 2: 858-863, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-28962421

RESUMEN

Cadmium (Cd) is a known hepato- and nephrotoxic pollutant and zinc (Zn) metalloproteins are important targets of Cd. Hence, the administration of Zn may mitigate Cd toxic effects. However, the interaction of Cd and Zn has been little investigated in the brain. Previously, we reported a protective effect of Zn on mortality caused by Cd in rats. Here, we tested whether the protective effect of Zn could be related to changes in brain Zn-proteins, metallothionein (MT) and δ-aminolevulinate dehydratse (δ-ALA-D). Male adult rats were daily administered for 10 days with Zn (2 mg kg-1), Cd (0.25 and 1 mg kg-1) and 0.25 mg kg-1 of Cd plus Zn and 1 mg kg-1 of Cd plus Zn. The body weight loss, food intake deprivation, and mortality occurred in 1 mg kg-1 of Cd, but Zn co-administration did mitigate these effects. The brain Zn content was not modified by treatment with Cd, whereas cerebral Cd levels increased in animals exposed to Cd. The administration of 0.25 mg kg-1 of Cd (with or without Zn) induced lipid peroxidation and decreased MT concentration, but 2 mg kg-1 of Zn and 1 mg kg-1 of Cd did not change these parameters. Brain δ-ALA-D was not modified by Cd and/or Zn treatments. Since the co-administration of Zn did not attenuate the changes induced by Cd in the brain, our results suggest that the protective effect of Zn on impairments caused by Cd in animal status is weakly related to a cerebral interaction of these metals.

20.
Toxicol In Vitro ; 28(5): 822-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24681127

RESUMEN

Ethanol (EtOH) and its metabolite, acetaldehyde (ALD), induce deleterious effects on central nervous system (CNS). Here we investigate the in vitro toxicity of EtOH and ALD (concentrations of 0.25%, 0.5%, and 1%) in zebrafish brain structures [telencephalon (TE), opticum tectum (OT), and cerebellum (CE)] by measuring the functionality of glutamate transporters, MTT reduction, and extracellular LDH activity. Both molecules decreased the activity of the Na(+)-dependent glutamate transporters in all brain structures. The strongest glutamate uptake inhibition after EtOH exposure was 58% (TE-1%), and after ALD, 91% (CE-1%). The results of MTT assay and LDH released demonstrated that the actions of EtOH and its metabolite are concentration and structure-dependent, in which ALD was more toxic than EtOH. In summary, our findings demonstrate a differential toxicity in vitro of EtOH and ALD in zebrafish brain structures, which can involve changes on glutamatergic parameters. We suggest that this species may be an interesting model for assessing the toxicological actions of alcohol and its metabolite in CNS.


Asunto(s)
Acetaldehído/toxicidad , Encéfalo/efectos de los fármacos , Etanol/toxicidad , Pez Cebra , Animales , Encéfalo/metabolismo , Supervivencia Celular/efectos de los fármacos , Femenino , Ácido Glutámico/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA