Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 164, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575795

RESUMEN

Diabetic hyperglycemia induces dysfunctions of arterial smooth muscle, leading to diabetic vascular complications. The CaV1.2 calcium channel is one primary pathway for Ca2+ influx, which initiates vasoconstriction. However, the long-term regulation mechanism(s) for vascular CaV1.2 functions under hyperglycemic condition remains unknown. Here, Sprague-Dawley rats fed with high-fat diet in combination with low dose streptozotocin and Goto-Kakizaki (GK) rats were used as diabetic models. Isolated mesenteric arteries (MAs) and vascular smooth muscle cells (VSMCs) from rat models were used to assess K+-induced arterial constriction and CaV1.2 channel functions using vascular myograph and whole-cell patch clamp, respectively. K+-induced vasoconstriction is persistently enhanced in the MAs from diabetic rats, and CaV1.2 alternative spliced exon 9* is increased, while exon 33 is decreased in rat diabetic arteries. Furthermore, CaV1.2 channels exhibit hyperpolarized current-voltage and activation curve in VSMCs from diabetic rats, which facilitates the channel function. Unexpectedly, the application of glycated serum (GS), mimicking advanced glycation end-products (AGEs), but not glucose, downregulates the expression of the splicing factor Rbfox1 in VSMCs. Moreover, GS application or Rbfox1 knockdown dynamically regulates alternative exons 9* and 33, leading to facilitated functions of CaV1.2 channels in VSMCs and MAs. Notably, GS increases K+-induced intracellular calcium concentration of VSMCs and the vasoconstriction of MAs. These results reveal that AGEs, not glucose, long-termly regulates CaV1.2 alternative splicing events by decreasing Rbfox1 expression, thereby enhancing channel functions and increasing vasoconstriction under diabetic hyperglycemia. This study identifies the specific molecular mechanism for enhanced vasoconstriction under hyperglycemia, providing a potential target for managing diabetic vascular complications.


Asunto(s)
Diabetes Mellitus Experimental , Angiopatías Diabéticas , Hiperglucemia , Animales , Ratas , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Constricción , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Angiopatías Diabéticas/metabolismo , Glucosa/metabolismo , Hiperglucemia/genética , Hiperglucemia/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Ratas Sprague-Dawley
2.
Clin Sci (Lond) ; 136(11): 803-817, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35543237

RESUMEN

Calcium influx from depolarized CaV1.2 calcium channels triggers the contraction of vascular smooth muscle cells (VSMCs), which is important for maintaining vascular myogenic tone and blood pressure. The function of CaV1.2 channel can be subtly modulated by alternative splicing (AS), and its aberrant splicing involves in the pathogenesis of multiple cardiovascular diseases. The RNA-binding protein Rbfox1 is reported to regulate the AS events of CaV1.2 channel in the neuronal development, but its potential roles in vascular CaV1.2 channels and vasoconstriction remain undefined. Here, we detect Rbfox1 is expressed in rat vascular smooth muscles. Moreover, the protein level of Rbfox1 is dramatically decreased in the hypertensive small arteries from spontaneously hypertensive rats in comparison with normotensive ones from Wistar-Kyoto rats. In VSMCs, Rbfox1 could dynamically regulate the AS of CaV1.2 exons 9* and 33. By whole-cell patch clamp, we identify knockdown of Rbfox1 induces the hyperpolarization of CaV1.2 current-voltage relationship curve in VSMCs. Furthermore, siRNA-mediated knockdown of Rbfox1 increases the K+-induced constriction of rat mesenteric arteries. In summary, our results indicate Rbfox1 modulates vascular constriction by dynamically regulating CaV1.2 alternative exons 9* and 33. Therefore, our work elucidates the underlying mechanisms for CaV1.2 channels regulation and provides a potential therapeutic target for hypertension.


Asunto(s)
Hipertensión , Vasoconstricción , Empalme Alternativo , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Constricción , Arterias Mesentéricas/metabolismo , Miocitos del Músculo Liso/metabolismo , Ratas , Ratas Endogámicas WKY
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA