Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Res Notes ; 16(1): 246, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777793

RESUMEN

Traditional histological analysis is conducted on thin tissue sections, limiting the data capture from large tissue volumes to 2D profiles, and requiring stereological methods for 3D assessment. Recent advances in microscopical and tissue clearing methods have facilitated 3D reconstructions of tissue structure. However, staining of large tissue blocks remains a challenge, often requiring specialised and expensive equipment to clear and immunolabel tissue. Here, we present the Affordable Brain Slice Optical Clearing (ABSOC) method: a modified iDISCO protocol which enables clearing and immunolabeling of mouse brain slices up to 1 mm thick using inexpensive reagents and equipment, with no intensive expert training required. We illustrate the use of ABSOC in 1 mm C57BL/6J mouse coronal brain slices sectioned through the dorsal hippocampus and immunolabelled with an anti-calretinin antibody. The ABSOC method can be readily used for histological studies of mouse brain in order to move from the use of very thin tissue sections to large volumes of tissue - giving more representative analysis of biological samples, without the need for sampling of small regions only.


Asunto(s)
Encéfalo , Microscopía , Ratones , Animales , Ratones Endogámicos C57BL , Microscopía/métodos , Imagenología Tridimensional/métodos , Manejo de Especímenes
2.
iScience ; 26(2): 106073, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36818290

RESUMEN

The Dp(10)2Yey mouse carries a ∼2.3-Mb intra-chromosomal duplication of mouse chromosome 10 (Mmu10) that has homology to human chromosome 21, making it an essential model for aspects of Down syndrome (DS, trisomy 21). In this study, we investigated neuronal dysfunction in the Dp(10)2Yey mouse and report spatial memory impairment and anxiety-like behavior alongside altered neural activity in the medial prefrontal cortex (mPFC) and hippocampus (HPC). Specifically, Dp(10)2Yey mice showed impaired spatial alternation associated with increased sharp-wave ripple activity in mPFC during a period of memory consolidation, and reduced mobility in a novel environment accompanied by reduced theta-gamma phase-amplitude coupling in HPC. Finally, we found alterations in the number of interneuron subtypes in mPFC and HPC that may contribute to the observed phenotypes and highlight potential approaches to ameliorate the effects of human trisomy 21.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA