Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell ; 175(4): 934-946.e15, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30343903

RESUMEN

CRISPR-Cas systems confer an adaptive immunity against viruses. Following viral injection, Cas1-Cas2 integrates segments of the viral genome (spacers) into the CRISPR locus. In type I CRISPR-Cas systems, efficient "primed" spacer acquisition and viral degradation (interference) require both the Cascade complex and the Cas3 helicase/nuclease. Here, we present single-molecule characterization of the Thermobifida fusca (Tfu) primed acquisition complex (PAC). We show that TfuCascade rapidly samples non-specific DNA via facilitated one-dimensional diffusion. Cas3 loads at target-bound Cascade and the Cascade/Cas3 complex translocates via a looped DNA intermediate. Cascade/Cas3 complexes stall at diverse protein roadblocks, resulting in a double strand break at the stall site. In contrast, Cas1-Cas2 samples DNA transiently via 3D collisions. Moreover, Cas1-Cas2 associates with Cascade and translocates with Cascade/Cas3, forming the PAC. PACs can displace different protein roadblocks, suggesting a mechanism for long-range spacer acquisition. This work provides a molecular basis for the coordinated steps in CRISPR-based adaptive immunity.


Asunto(s)
Actinomycetales/enzimología , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/química , ADN Viral/metabolismo , Multimerización de Proteína , Imagen Individual de Molécula
2.
Genes Dev ; 35(23-24): 1625-1641, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34764137

RESUMEN

The mammalian telomeric shelterin complex-comprised of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1-blocks the DNA damage response at chromosome ends and interacts with telomerase and the CST complex to regulate telomere length. The evolutionary origins of shelterin are unclear, partly because unicellular organisms have distinct telomeric proteins. Here, we describe the evolution of metazoan shelterin, showing that TRF1 emerged in vertebrates upon duplication of a TRF2-like ancestor. TRF1 and TRF2 diverged rapidly during vertebrate evolution through the acquisition of new domains and interacting factors. Vertebrate shelterin is also distinguished by the presence of an HJRL domain in the split C-terminal OB fold of POT1, whereas invertebrate POT1s carry inserts of variable nature. Importantly, the data reveal that, apart from the primate and rodent POT1 orthologs, all metazoan POT1s are predicted to have a fourth OB fold at their N termini. Therefore, we propose that POT1 arose from a four-OB-fold ancestor, most likely an RPA70-like protein. This analysis provides insights into the biology of shelterin and its evolution from ancestral telomeric DNA-binding proteins.


Asunto(s)
Proteína 2 de Unión a Repeticiones Teloméricas , Tripeptidil Peptidasa 1 , Animales , Mamíferos/genética , Complejo Shelterina , Telómero/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
3.
Mol Cell ; 75(1): 145-153.e5, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31153714

RESUMEN

Genetic recombination in all kingdoms of life initiates when helicases and nucleases process (resect) the free DNA ends to expose single-stranded DNA (ssDNA) overhangs. Resection regulation in bacteria is programmed by a DNA sequence, but a general mechanism limiting resection in eukaryotes has remained elusive. Using single-molecule imaging of reconstituted human DNA repair factors, we identify phosphorylated RPA (pRPA) as a negative resection regulator. Bloom's syndrome (BLM) helicase together with exonuclease 1 (EXO1) and DNA2 nucleases catalyze kilobase-length DNA resection on nucleosome-coated DNA. The resulting ssDNA is rapidly bound by RPA, which further stimulates DNA resection. RPA is phosphorylated during resection as part of the DNA damage response (DDR). Remarkably, pRPA inhibits DNA resection in cellular assays and in vitro via inhibition of BLM helicase. pRPA suppresses BLM initiation at DNA ends and promotes the intrinsic helicase strand-switching activity. These findings establish that pRPA provides a feedback loop between DNA resection and the DDR.


Asunto(s)
ADN de Cadena Simple/genética , Retroalimentación Fisiológica , RecQ Helicasas/genética , Proteínas Recombinantes de Fusión/genética , Proteína de Replicación A/genética , Sitios de Unión , ADN Helicasas/genética , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , ADN de Cadena Simple/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Regulación de la Expresión Génica , Recombinación Homóloga , Humanos , Microscopía Fluorescente , Nucleosomas/química , Nucleosomas/metabolismo , Oligopéptidos/genética , Oligopéptidos/metabolismo , Fosforilación , Unión Proteica , RecQ Helicasas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteína de Replicación A/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Imagen Individual de Molécula
4.
Mol Cell ; 67(5): 891-898.e4, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28867292

RESUMEN

DNA double-strand break (DSB) repair is essential for maintaining our genomes. Mre11-Rad50-Nbs1 (MRN) and Ku70-Ku80 (Ku) direct distinct DSB repair pathways, but the interplay between these complexes at a DSB remains unclear. Here, we use high-throughput single-molecule microscopy to show that MRN searches for free DNA ends by one-dimensional facilitated diffusion, even on nucleosome-coated DNA. Rad50 binds homoduplex DNA and promotes facilitated diffusion, whereas Mre11 is required for DNA end recognition and nuclease activities. MRN gains access to occluded DNA ends by removing Ku or other DNA adducts via an Mre11-dependent nucleolytic reaction. Next, MRN loads exonuclease 1 (Exo1) onto the free DNA ends to initiate DNA resection. In the presence of replication protein A (RPA), MRN acts as a processivity factor for Exo1, retaining the exonuclease on DNA for long-range resection. Our results provide a mechanism for how MRN promotes homologous recombination on nucleosome-coated DNA.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Nucleosomas/enzimología , Reparación del ADN por Recombinación , Imagen Individual de Molécula , Ácido Anhídrido Hidrolasas , Proteínas de Ciclo Celular/genética , Aductos de ADN/genética , Aductos de ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Difusión , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Proteína Homóloga de MRE11 , Microscopía Fluorescente , Proteínas Nucleares/genética , Nucleosomas/genética , Factores de Tiempo
5.
Proc Natl Acad Sci U S A ; 113(9): E1170-9, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26884156

RESUMEN

Exonuclease 1 (Exo1) is a 5'→3' exonuclease and 5'-flap endonuclease that plays a critical role in multiple eukaryotic DNA repair pathways. Exo1 processing at DNA nicks and double-strand breaks creates long stretches of single-stranded DNA, which are rapidly bound by replication protein A (RPA) and other single-stranded DNA binding proteins (SSBs). Here, we use single-molecule fluorescence imaging and quantitative cell biology approaches to reveal the interplay between Exo1 and SSBs. Both human and yeast Exo1 are processive nucleases on their own. RPA rapidly strips Exo1 from DNA, and this activity is dependent on at least three RPA-encoded single-stranded DNA binding domains. Furthermore, we show that ablation of RPA in human cells increases Exo1 recruitment to damage sites. In contrast, the sensor of single-stranded DNA complex 1-a recently identified human SSB that promotes DNA resection during homologous recombination-supports processive resection by Exo1. Although RPA rapidly turns over Exo1, multiple cycles of nuclease rebinding at the same DNA site can still support limited DNA processing. These results reveal the role of single-stranded DNA binding proteins in controlling Exo1-catalyzed resection with implications for how Exo1 is regulated during DNA repair in eukaryotic cells.


Asunto(s)
Enzimas Reparadoras del ADN/fisiología , Proteínas de Unión al ADN/fisiología , Exodesoxirribonucleasas/fisiología , Biocatálisis , Daño del ADN , Humanos , Saccharomyces cerevisiae/metabolismo
6.
Science ; 383(6684): 763-770, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38359122

RESUMEN

Telomerase, the enzyme that maintains telomeres at natural chromosome ends, should be repressed at double-strand breaks (DSBs), where neotelomere formation can cause terminal truncations. We developed an assay to detect neotelomere formation at Cas9- or I-SceI-induced DSBs in human cells. Telomerase added telomeric repeats to DSBs, leading to interstitial telomeric repeat insertions or the formation of functional neotelomeres accompanied by terminal deletions. The threat that telomerase poses to genome integrity was minimized by ataxia telangiectasia and Rad3-related (ATR) kinase signaling, which inhibited telomerase at resected DSBs. In addition to acting at resected DSBs, telomerase used the extruded strand in the Cas9 enzyme-product complex as a primer for neotelomere formation. We propose that although neotelomere formation is detrimental in normal human cells, it may allow cancer cells to escape from breakage-fusion-bridge cycles.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Roturas del ADN de Doble Cadena , Telomerasa , Telómero , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Telomerasa/genética , Telómero/genética , Telómero/metabolismo , Técnicas Genéticas , Proteína 9 Asociada a CRISPR , Células HeLa
7.
Nat Struct Mol Biol ; 30(9): 1346-1356, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37653239

RESUMEN

Telomeres replicated by leading-strand synthesis lack the 3' overhang required for telomere protection. Surprisingly, resection of these blunt telomeres is initiated by the telomere-specific 5' exonuclease Apollo rather than the Mre11-Rad50-Nbs1 (MRN) complex, the nuclease that acts at DNA breaks. Without Apollo, leading-end telomeres undergo fusion, which, as demonstrated here, is mediated by alternative end joining. Here, we show that DNA-PK and TRF2 coordinate the repression of MRN at blunt mouse telomeres. DNA-PK represses an MRN-dependent long-range resection, while the endonuclease activity of MRN-CtIP, which could cleave DNA-PK off of blunt telomere ends, is inhibited in vitro and in vivo by the iDDR of TRF2. AlphaFold-Multimer predicts a conserved association of the iDDR with Rad50, potentially interfering with CtIP binding and MRN endonuclease activation. We propose that repression of MRN-mediated resection is a conserved aspect of telomere maintenance and represents an ancient feature of DNA-PK and the iDDR.


Asunto(s)
Roturas del ADN , Proteína Quinasa Activada por ADN , Animales , Ratones , Endonucleasas , Telómero , ADN
8.
Sci Adv ; 6(2): eaay0922, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31934630

RESUMEN

The repair of DNA double-strand breaks occurs through nonhomologous end joining or homologous recombination in vertebrate cells-a choice that is thought to be decided by a competition between DNA-dependent protein kinase (DNA-PK) and the Mre11/Rad50/Nbs1 (MRN) complex but is not well understood. Using ensemble biochemistry and single-molecule approaches, here, we show that the MRN complex is dependent on DNA-PK and phosphorylated CtIP to perform efficient processing and resection of DNA ends in physiological conditions, thus eliminating the competition model. Endonucleolytic removal of DNA-PK-bound DNA ends is also observed at double-strand break sites in human cells. The involvement of DNA-PK in MRN-mediated end processing promotes an efficient and sequential transition from nonhomologous end joining to homologous recombination by facilitating DNA-PK removal.


Asunto(s)
Proteína Quinasa Activada por ADN/metabolismo , ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Complejos Multiproteicos/metabolismo , Línea Celular , Humanos , Imagen Individual de Molécula
9.
Methods Mol Biol ; 1999: 225-244, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31127580

RESUMEN

DNA double-strand breaks (DSBs) are a potentially lethal DNA lesions that disrupt both the physical and genetic continuity of the DNA duplex. Homologous recombination (HR) is a universally conserved genome maintenance pathway that initiates via nucleolytic processing of the broken DNA ends (resection). Eukaryotic DNA resection is catalyzed by the resectosome-a multicomponent molecular machine consisting of the nucleases DNA2 or Exonuclease 1 (EXO1), Bloom's helicase (BLM), the MRE11-RAD50-NBS1 (MRN) complex, and additional regulatory factors. Here, we describe methods for purification and single-molecule imaging and analysis of EXO1, DNA2, and BLM. We also describe how to adapt resection assays to the high-throughput single-molecule DNA curtain assay. By organizing hundreds of individual molecules on the surface of a microfluidic flowcell, DNA curtains visualize protein complexes with the required spatial and temporal resolution to resolve the molecular choreography during critical DNA-processing reactions.


Asunto(s)
Técnicas Analíticas Microfluídicas/métodos , Reparación del ADN por Recombinación , Imagen Individual de Molécula/métodos , Roturas del ADN de Doble Cadena , ADN Helicasas/análisis , ADN Helicasas/genética , ADN Helicasas/aislamiento & purificación , Enzimas Reparadoras del ADN/análisis , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/aislamiento & purificación , Exodesoxirribonucleasas/análisis , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/aislamiento & purificación , Microscopía Fluorescente/métodos , Puntos Cuánticos/química , RecQ Helicasas/genética , RecQ Helicasas/aislamiento & purificación , Proteínas Recombinantes/análisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
10.
Methods Mol Biol ; 2004: 269-287, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31147924

RESUMEN

The Mre11-Rad50-Nbs1 (MRN) complex coordinates the repair of DNA double-strand breaks, replication fork restart, meiosis, class-switch recombination, and telomere maintenance. As such, MRN is an essential molecular machine that has homologs in all organisms of life, from bacteriophage to humans. In human cells, MRN is a >500 kDa multifunctional complex that encodes DNA binding, ATPase, and both endonuclease and exonuclease activities. MRN also forms larger assemblies and interacts with multiple DNA repair and replication factors. The enzymatic properties of MRN have been the subject of intense research for over 20 years, and more recently, single-molecule biophysics studies are beginning to probe its many biochemical activities. Here, we describe the methods used to overexpress, fluorescently label, and visualize MRN and its activities on single molecules of DNA.


Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína Homóloga de MRE11/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatasas/metabolismo , ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Replicación del ADN/fisiología , Humanos , Meiosis/fisiología
11.
Nat Commun ; 10(1): 2954, 2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-31273204

RESUMEN

PARP-1 is rapidly recruited and activated by DNA double-strand breaks (DSBs). Upon activation, PARP-1 synthesizes a structurally complex polymer composed of ADP-ribose units that facilitates local chromatin relaxation and the recruitment of DNA repair factors. Here, we identify a function for PARP-1 in DNA DSB resection. Remarkably, inhibition of PARP-1 leads to hyperresected DNA DSBs. We show that loss of PARP-1 and hyperresection are associated with loss of Ku, 53BP1 and RIF1 resection inhibitors from the break site. DNA curtains analysis show that EXO1-mediated resection is blocked by PARP-1. Furthermore, PARP-1 abrogation leads to increased DNA resection tracks and an increase of homologous recombination in cellulo. Our results, therefore, place PARP-1 activation as a critical early event for DNA DSB repair activation and regulation of resection. Hence, our work has direct implications for the clinical use and effectiveness of PARP inhibition, which is prescribed for the treatment of various malignancies.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Cromatina/metabolismo , Técnicas de Silenciamiento del Gen , Células HeLa , Recombinación Homóloga/genética , Humanos , Ratones , Modelos Biológicos , Proteínas Nucleares/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
12.
Cell Rep ; 24(6): 1471-1483, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30089259

RESUMEN

Ataxia-telangiectasia mutated (ATM) is a serine/threonine kinase that coordinates the response to DNA double-strand breaks and oxidative stress. NKX3.1, a prostate-specific transcription factor, was recently shown to directly stimulate ATM kinase activity through its highly conserved homeodomain. Here, we show that other members of the homeodomain family can also regulate ATM kinase activity. We found that six representative homeodomain proteins (NKX3.1, NKX2.2, TTF1, NKX2.5, HOXB7, and CDX2) physically and functionally interact with ATM and with the Mre11-Rad50-Nbs1 (MRN) complex that activates ATM in combination with DNA double-strand breaks. The binding between homeodomain proteins and ATM stimulates oxidation-induced ATM activation in vitro but inhibits ATM kinase activity in the presence of MRN and DNA and in human cells. These findings suggest that many tissue-specific homeodomain proteins may regulate ATM activity during development and differentiation and that this is a unique mechanism for the control of the DNA damage response.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Homeodominio/metabolismo , Proteína Homeobox Nkx-2.2 , Humanos , Proteínas Nucleares , Factores de Transcripción , Transfección
13.
Prog Biophys Mol Biol ; 127: 119-129, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27498169

RESUMEN

DNA double-strand breaks (DSBs) disrupt the physical and genetic continuity of the genome. If unrepaired, DSBs can lead to cellular dysfunction and malignant transformation. Homologous recombination (HR) is a universally conserved DSB repair mechanism that employs the information in a sister chromatid to catalyze error-free DSB repair. To initiate HR, cells assemble the resectosome: a multi-protein complex composed of helicases, nucleases, and regulatory proteins. The resectosome nucleolytically degrades (resects) the free DNA ends for downstream homologous recombination. Several decades of intense research have identified the core resectosome components in eukaryotes, archaea, and bacteria. More recently, these proteins have been characterized via single-molecule approaches. Here, we focus on recent single-molecule studies that have begun to unravel how nucleases, helicases, processivity factors, and other regulatory proteins dictate the extent and efficiency of DNA resection in eukaryotic cells. We conclude with a discussion of outstanding questions that can be addressed via single-molecule approaches.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN/genética , Eucariontes/genética , Animales , ADN/química , Humanos
14.
Methods Enzymol ; 592: 259-281, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28668123

RESUMEN

Homologous recombination (HR) is a universally conserved DNA double-strand break repair pathway. Single-molecule fluorescence imaging approaches have revealed new mechanistic insights into nearly all aspects of HR. These methods are especially suited for studying protein complexes because multicolor fluorescent imaging can parse out subassemblies and transient intermediates that associate with the DNA substrates on the millisecond to hour timescales. However, acquiring single-molecule datasets remains challenging because most of these approaches are designed to measure one molecular reaction at a time. The DNA curtains platform facilitates high-throughput single-molecule imaging by organizing arrays of DNA molecules on the surface of a microfluidic flowcell. Here, we describe a second-generation UV lithography-based protocol for fabricating flowcells for DNA curtains. This protocol greatly reduces the challenges associated with assembling DNA curtains and paves the way for the rapid acquisition of large datasets from individual single-molecule experiments. Drawing on our recent studies of human HR, we also provide an overview of how DNA curtains can be used for observing facilitated protein diffusion, processive enzyme translocation, and nucleoprotein filament dynamics on single-stranded DNA. Together, these protocols and case studies form a comprehensive introduction for other researchers that may want to adapt DNA curtains for high-throughput single-molecule studies of DNA replication, transcription, and repair.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Ensayos Analíticos de Alto Rendimiento/instrumentación , Ácidos Nucleicos Inmovilizados/metabolismo , Técnicas Analíticas Microfluídicas/instrumentación , Microtecnología/métodos , Nucleoproteínas/metabolismo , Imagen Óptica/instrumentación , Animales , Proteínas de Unión al ADN/análisis , Difusión , Diseño de Equipo , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Ácidos Nucleicos Inmovilizados/química , Técnicas Analíticas Microfluídicas/métodos , Nucleoproteínas/análisis , Imagen Óptica/métodos , Reparación del ADN por Recombinación , Rayos Ultravioleta
15.
PLoS One ; 9(6): e97969, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24933654

RESUMEN

Resveratrol has been widely reported to reduce cancer progression in model systems and to selectively induce cell death in transformed cell lines. Many enzymes have been reported to respond to resveratrol in mammalian cells, including the Ataxia-Telangiectasia Mutated (ATM) protein kinase that acts in DNA damage recognition, signaling, and repair. Here we investigate the responses of ATM to resveratrol exposure in normal and transformed human cell lines and find that ATM autophosphorylation and substrate phosphorylation is stimulated by resveratrol in a manner that is promoted by reactive oxygen species (ROS). We observe direct stimulatory effects of resveratrol on purified ATM in vitro and find that the catalytic efficiency of the kinase on a model substrate is increased by resveratrol. In the purified system we also observe a requirement for oxidation, as the effect of resveratrol on ATM signaling is substantially reduced by agents that prevent disulfide bond formation in ATM. These results demonstrate that resveratrol effects on ATM are direct, and suggest a mechanism by which the oxidizing environment of transformed cells promotes ATM activity and blocks cell proliferation.


Asunto(s)
Antioxidantes/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Transformación Celular Neoplásica/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estilbenos/farmacología , Bleomicina/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Células HCT116 , Células HEK293 , Humanos , Peróxido de Hidrógeno/farmacología , Oxidantes/farmacología , Fosforilación/efectos de los fármacos , Resveratrol , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA