Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
BMC Biol ; 20(1): 141, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705990

RESUMEN

BACKGROUND: DNA methylation is involved in the epigenetic regulation of gene expression during developmental processes and is primarily established by the DNA methyltransferase 3A (DNMT3A) and 3B (DNMT3B). DNMT3A is one of the most frequently mutated genes in clonal hematopoiesis and leukemia, indicating that it plays a crucial role for hematopoietic differentiation. However, the functional relevance of Dnmt3a for hematopoietic differentiation and hematological malignancies has mostly been analyzed in mice, with the specific role for human hematopoiesis remaining elusive. In this study, we therefore investigated if DNMT3A is essential for hematopoietic differentiation of human induced pluripotent stem cells (iPSCs). RESULTS: We generated iPSC lines with knockout of either exon 2, 19, or 23 and analyzed the impact of different DNMT3A exon knockouts on directed differentiation toward mesenchymal and hematopoietic lineages. Exon 19-/- and 23-/- lines displayed an almost entire absence of de novo DNA methylation during mesenchymal and hematopoietic differentiation. Yet, differentiation efficiency was only slightly reduced in exon 19-/- and rather increased in exon 23-/- lines, while there was no significant impact on gene expression in hematopoietic progenitors (iHPCs). Notably, DNMT3A-/- iHPCs recapitulate some DNA methylation patterns of acute myeloid leukemia (AML) with DNMT3A mutations. Furthermore, multicolor genetic barcoding revealed growth advantage of exon 23-/- iHPCs in a syngeneic competitive differentiation assay. CONCLUSIONS: Our results demonstrate that iPSCs with homozygous knockout of different exons of DNMT3A remain capable of mesenchymal and hematopoietic differentiation-and exon 23-/- iHPCs even gained growth advantage-despite loss of almost the entire de novo DNA methylation. Partial recapitulation of DNA methylation patterns of AML with DNMT3A mutations by our DNMT3A knockout iHPCs indicates that our model system can help to elucidate mechanisms of clonal hematopoiesis.


Asunto(s)
Células Madre Pluripotentes Inducidas , Leucemia Mieloide Aguda , Animales , Diferenciación Celular/genética , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ADN Metiltransferasa 3A , Epigénesis Genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Ratones
2.
Clin Chem ; 68(5): 646-656, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35157041

RESUMEN

BACKGROUND: Differential leukocyte counts are usually measured based on cellular morphology or surface marker expression. It has recently been shown that leukocyte counts can also be determined by cell-type-specific DNA methylation (DNAm). Such epigenetic leukocyte counting is applicable to small blood volumes and even frozen material, but for clinical translation, the method needs to be further refined and validated. METHODS: We further optimized and validated targeted DNAm assays for leukocyte deconvolution using 332 venous and 122 capillary blood samples from healthy donors. In addition, we tested 36 samples from ring trials and venous blood from 266 patients diagnosed with different hematological diseases. Deconvolution of cell types was determined with various models using DNAm values obtained by pyrosequencing or digital droplet PCR (ddPCR). RESULTS: Relative leukocyte quantification correlated with conventional blood counts for granulocytes, lymphocytes, B cells, T cells (CD4 or CD8), natural killer cells, and monocytes with pyrosequencing (r = 0.84; r = 0.82; r = 0.58; r = 0.50; r = 0.70; r = 0.61; and r = 0.59, respectively) and ddPCR measurements (r = 0.65; r = 0.79; r = 0.56; r = 0.57; r = 0.75; r = 0.49; and r = 0.46, respectively). In some patients, particularly with hematopoietic malignancies, we observed outliers in epigenetic leukocyte counts, which could be discerned if relative proportions of leukocyte subsets did not sum up to 100%. Furthermore, absolute quantification was obtained by spiking blood samples with a reference plasmid of known copy number. CONCLUSIONS: Targeted DNAm analysis by pyrosequencing or ddPCR is a valid alternative to quantify leukocyte subsets, but some assays require further optimization.


Asunto(s)
Metilación de ADN , Epigenómica , Granulocitos , Humanos , Recuento de Leucocitos , Leucocitos
3.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34502212

RESUMEN

Age is a major risk factor for severe outcome of the 2019 coronavirus disease (COVID-19). In this study, we followed the hypothesis that particularly patients with accelerated epigenetic age are affected by severe outcomes of COVID-19. We investigated various DNA methylation datasets of blood samples with epigenetic aging signatures and performed targeted bisulfite amplicon sequencing. Overall, epigenetic clocks closely correlated with the chronological age of patients, either with or without acute respiratory distress syndrome. Furthermore, lymphocytes did not reveal significantly accelerated telomere attrition. Thus, these biomarkers cannot reliably predict higher risk for severe COVID-19 infection in elderly patients.


Asunto(s)
Envejecimiento/genética , COVID-19/patología , Epigénesis Genética , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/complicaciones , COVID-19/virología , Estudios de Casos y Controles , Islas de CpG , Metilación de ADN , Femenino , Humanos , Masculino , Persona de Mediana Edad , Síndrome de Dificultad Respiratoria/etiología , SARS-CoV-2/aislamiento & purificación , Telómero/metabolismo , Acortamiento del Telómero
4.
Sci Rep ; 9(1): 15578, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31666572

RESUMEN

Directed differentiation of induced pluripotent stem cells (iPSCs) towards specific lineages remains a major challenge in regenerative medicine, while there is a growing perception that this process can be influenced by the three-dimensional environment. In this study, we investigated whether iPSCs can differentiate towards mesenchymal stromal cells (MSCs) when embedded into fibrin hydrogels to enable a one-step differentiation procedure within a scaffold. Differentiation of iPSCs on tissue culture plastic or on top of fibrin hydrogels resulted in a typical MSC-like phenotype. In contrast, iPSCs embedded into fibrin gel gave rise to much smaller cells with heterogeneous growth patterns, absence of fibronectin, faint expression of CD73 and CD105, and reduced differentiation potential towards osteogenic and adipogenic lineage. Transcriptomic analysis demonstrated that characteristic genes for MSCs and extracellular matrix were upregulated on flat substrates, whereas genes of neural development were upregulated in 3D culture. Furthermore, the 3D culture had major effects on DNA methylation profiles, particularly within genes for neuronal and cardiovascular development, while there was no evidence for epigenetic maturation towards MSCs. Taken together, iPSCs could be differentiated towards MSCs on tissue culture plastic or on a flat fibrin hydrogel. In contrast, the differentiation process was heterogeneous and not directed towards MSCs when iPSCs were embedded into the hydrogel.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/efectos de los fármacos , Hidrogeles/farmacología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Proliferación Celular/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Humanos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA