RESUMEN
Pathology consisting of intracellular aggregates of alpha-Synuclein (α-Syn) spread through the nervous system in a variety of neurodegenerative disorders including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. The discovery of structurally distinct α-Syn polymorphs, so-called strains, supports a hypothesis where strain-specific structures are templated into aggregates formed by native α-Syn. These distinct strains are hypothesised to dictate the spreading of pathology in the tissue and the cellular impact of the aggregates, thereby contributing to the variety of clinical phenotypes. Here, we present evidence of a novel α-Syn strain induced by the multiple system atrophy-associated oligodendroglial protein p25α. Using an array of biophysical, biochemical, cellular, and in vivo analyses, we demonstrate that compared to α-Syn alone, a substoichiometric concentration of p25α redirects α-Syn aggregation into a unique α-Syn/p25α strain with a different structure and enhanced in vivo prodegenerative properties. The α-Syn/p25α strain induced larger inclusions in human dopaminergic neurons. In vivo, intramuscular injection of preformed fibrils (PFF) of the α-Syn/p25α strain compared to α-Syn PFF resulted in a shortened life span and a distinct anatomical distribution of inclusion pathology in the brain of a human A53T transgenic (line M83) mouse. Investigation of α-Syn aggregates in brain stem extracts of end-stage mice demonstrated that the more aggressive phenotype of the α-Syn/p25α strain was associated with an increased load of α-Syn aggregates based on a Förster resonance energy transfer immunoassay and a reduced α-Syn aggregate seeding activity based on a protein misfolding cyclic amplification assay. When injected unilaterally into the striata of wild-type mice, the α-Syn/p25α strain resulted in a more-pronounced motoric phenotype than α-Syn PFF and exhibited a "tropism" for nigro-striatal neurons compared to α-Syn PFF. Overall, our data support a hypothesis whereby oligodendroglial p25α is responsible for generating a highly prodegenerative α-Syn strain in multiple system atrophy.
Asunto(s)
Atrofia de Múltiples Sistemas/genética , Enfermedades Neurodegenerativas/genética , Sinucleinopatías/patología , alfa-Sinucleína/genética , Animales , Línea Celular , Humanos , Cuerpos de Inclusión/patología , Ratones , Ratones Transgénicos , Atrofia de Múltiples Sistemas/patología , Proteínas del Tejido Nervioso/genética , Oligodendroglía/metabolismo , Conformación Proteica , Deficiencias en la Proteostasis/genética , Sustancia Negra/patología , alfa-Sinucleína/toxicidadRESUMEN
Dynamic nuclear polarization (DNP) NMR can enhance sensitivity but often comes at the price of a substantial loss of resolution. Two major factors affect spectral quality: low-temperature heterogeneous line broadening and paramagnetic relaxation enhancement (PRE) effects. Investigations by NMR spectroscopy, isothermal titration calorimetry (ITC), and EPR revealed a new substantial affinity of TOTAPOL to amyloid surfaces, very similar to that shown by the fluorescent dye thioflavin-T (ThT). As a consequence, DNP spectra with remarkably good resolution and still reasonable enhancement could be obtained at very low TOTAPOL concentrations, typically 400 times lower than commonly employed. These spectra yielded several long-range constraints that were difficult to obtain without DNP. Our findings open up new strategies for structural studies with DNP NMR spectroscopy on amyloids that can bind the biradical with affinity similar to that shown towards ThT.
Asunto(s)
Amiloide/química , Óxidos N-Cíclicos/química , Espectroscopía de Resonancia Magnética/métodos , Propanoles/química , Animales , Sitios de Unión , Humanos , Estructura Molecular , Propiedades de SuperficieRESUMEN
Curli are functional bacterial amyloids produced by an intricate biogenesis machinery. Insights into their folding and regulation can advance our understanding of amyloidogenesis. However, gaining detailed structural information of amyloids, and their tendency for structural polymorphisms, remains challenging. Herein we compare high-quality solid-state NMR spectra from biofilm-derived and recombinantly produced curli and provide evidence that they adopt a similar, well-defined ß-solenoid arrangement. Curli subunits consist of five sequence repeats, resulting in severe spectral overlap. Using segmental isotope labeling, we obtained the unambiguous sequence-specific resonance assignments and secondary structure of one repeat, and demonstrate that all repeats are most likely structurally equivalent.
Asunto(s)
Amiloide/química , Biopelículas , Fimbrias Bacterianas/química , Fimbrias Bacterianas/metabolismo , Secuencia de Aminoácidos , Espectroscopía de Resonancia MagnéticaRESUMEN
MAS-NMR was used to study the structure and dynamics at ambient temperatures of the membrane-anchor domain of YadA (YadA-M) in a pellet of the outer membrane of E.â coli in which it was expressed. YadA is an adhesin from the pathogen Yersinia enterocolitica that is involved in interactions with the host cell, and it is a model protein for studying the autotransport process. Existing assignments were sucessfully transferred to a large part of the YadA-M protein in the E.â coli lipid environment by using (13) C-(13) C DARR and PDSD spectra at different mixing times. The chemical shifts in most regions of YadA-M are unchanged relative to those in microcrystalline YadA-M preparations from which a structure has previously been solved, including the ASSA region that is proposed to be involved in transition-state hairpin formation for transport of the soluble domain. Comparisons of the dynamics between the microcrystalline and membrane-embedded samples indicate greater flexibility of the ASSA region in the outer-membrane preparation at physiological temperatures. This study will pave the way towards MAS-NMR structure determination of membrane proteins, and a better understanding of functionally important dynamic residues in native membrane environments.
Asunto(s)
Adhesinas Bacterianas/química , Yersinia enterocolitica/química , Adhesinas Bacterianas/genética , Secuencia de Aminoácidos , Adhesión Bacteriana , Escherichia coli/química , Escherichia coli/genética , Expresión Génica , Humanos , Lípidos/química , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Yersiniosis/microbiología , Yersinia enterocolitica/genéticaRESUMEN
Functional amyloids, beneficial to the organism producing them, are found throughout life, from bacteria to humans. While disease-related amyloids form by uncontrolled aggregation, the fibrillation of functional amyloid is regulated by complex cellular machinery and optimized sequences, including so-called gatekeeper residues such as Asp. However, the molecular basis for this regulation remains unclear. Here we investigate how the introduction of additional gatekeeper residues affects fibril formation and stability in the functional amyloid CsgA from E. coli. Step-wise introduction of additional Asp gatekeepers gradually eliminated fibrillation unless preformed fibrils were added, illustrating that gatekeepers mainly affect nucleus formation. Once formed, the mutant CsgA fibrils were just as stable as wild-type CsgA. HSQC NMR spectra confirmed that CsgA is intrinsically disordered, and that the introduction of gatekeeper residues does not alter this ensemble. NMR-based Dark-state Exchange Saturation Transfer (DEST) experiments on the different CsgA variants, however, show a decrease in transient interactions between monomeric states and the fibrils, highlighting a critical role for these interactions in the fibrillation process. We conclude that gatekeeper residues affect fibrillation kinetics without compromising structural integrity, making them useful and selective modulators of fibril properties.
Asunto(s)
Amiloide , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Amiloide/química , Amiloide/metabolismo , Amiloide/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/química , Estabilidad Proteica , Resonancia Magnética Nuclear Biomolecular , MutaciónRESUMEN
It is not well understood why severe acute respiratory syndrome (SARS)-CoV-2 spreads much faster than other ß-coronaviruses such as SARS-CoV and Middle East respiratory syndrome (MERS)-CoV. In a previous publication, we predicted the binding of the N-terminal domain (NTD) of SARS-CoV-2 spike to sialic acids (SAs). Here, we experimentally validate this interaction and present simulations that reveal a second possible interaction between SAs and the spike protein via a binding site located in the receptor-binding domain (RBD). The predictions from molecular-dynamics simulations and the previously-published 2D-Zernike binding-site recognition approach were validated through flow-induced dispersion analysis (FIDA)âwhich reveals the capability of the SARS-CoV-2 spike to bind to SA-containing (glyco)lipid vesicles, and flow-cytometry measurementsâwhich show that spike binding is strongly decreased upon inhibition of SA expression on the membranes of angiotensin converting enzyme-2 (ACE2)-expressing HEK cells. Our analyses reveal that the SA binding of the NTD and RBD strongly enhances the infection-inducing ACE2 binding. Altogether, our work provides in silico, in vitro, and cellular evidence that the SARS-CoV-2 virus utilizes a two-receptor (SA and ACE2) strategy. This allows the SARS-CoV-2 spike to use SA moieties on the cell membrane as a binding anchor, which increases the residence time of the virus on the cell surface and aids in the binding of the main receptor, ACE2, via 2D diffusion.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2 , Unión Proteica , Sitios de UniónRESUMEN
Small soluble oligomers of the protein α-synuclein (αSO) have been linked to disruptions in neuronal homeostasis, contributing to the development of Parkinson's Disease (PD). While this makes αSO an obvious drug target, the development of effective therapeutics against αSO is challenged by its low abundance and structural and morphological complexity. Here, we employ two different approaches to neutralize toxic interactions made by αSOs with different cellular components. First, we use available data to identify four neuronal proteins as likely candidates for αSO interactions, namely Cfl1, Uchl1, Sirt2 and SerRS. However, despite promising results when immobilized, all 4 proteins only bind weakly to αSO in solution in microfluidic assays, making them inappropriate for screening. In contrast, the formation of stable contacts formed between αSO and vesicles consisting of anionic lipids not only mimics a likely biological role of αSO but also provided a platform to screen two small molecule libraries for disruptors of these contacts. Of the 7 best leads obtained in this way, 2 significantly impaired αSO contacts with other proteins in a sandwich ELISA assay using αSO-binding monoclonal antibodies and nanobodies. In addition, 5 of these leads suppressed α-synuclein amyloid formation. Thus, a repurposing screening that directly targets a key culprit in PD pathogenesis shows therapeutic potential.
RESUMEN
Functional bacterial amyloid provides structural stability in biofilm, making it a promising target for anti-biofilm therapeutics. Fibrils formed by CsgA, the major amyloid component in E. coli are extremely robust and can withstand very harsh conditions. Like other functional amyloids, CsgA contains relatively short aggregation-prone regions (APR) which drive amyloid formation. Here, we demonstrate the use of aggregation-modulating peptides to knock down CsgA protein into aggregates with low stability and altered morphology. Remarkably, these CsgA-peptides also modulate fibrillation of the unrelated functional amyloid protein FapC from Pseudomonas, possibly through recognition of FapC segments with structural and sequence similarity with CsgA. The peptides also reduce the level of biofilm formation in E. coli and P. aeruginosa, demonstrating the potential for selective amyloid targeting to combat bacterial biofilm.
Asunto(s)
Amiloide , Proteínas Bacterianas , Biopelículas , Proteínas de Escherichia coli , Escherichia coli , Péptidos , Agregado de Proteínas , Amiloide/química , Proteínas Amiloidogénicas/química , Proteínas Bacterianas/química , Biopelículas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Péptidos/química , Péptidos/farmacología , Pseudomonas aeruginosa/metabolismo , Estabilidad ProteicaRESUMEN
Unlike misfolding in neurodegenerative diseases, aggregation of functional amyloids involved in bacterial biofilm, e.g. CsgA (E. coli) and FapC (Pseudomonas), is carefully regulated. However, it is unclear whether functional aggregation is inhibited by chaperones targeting pathological misfolding and if so by what mechanism. Here we analyze how four entirely different human chaperones or protein modulators (transthyretin, S100A9, Bri2 BRICHOS and DNAJB6) and bacterial CsgC affect CsgA and FapC fibrillation. CsgA is more susceptible to inhibition than FapC and the chaperones vary considerably in the efficiency of their inhibition. However, mechanistic analysis reveals that all predominantly target primary nucleation rather than elongation or secondary nucleation, while stoichiometric considerations suggest that DNAJB6 and CsgC target nuclei rather than monomers. Inhibition efficiency broadly scales with the chaperones' affinity for monomeric CsgA and FapC. The chaperones tend to target the most aggregation-prone regions of CsgA, but do not display such tendencies towards the more complex FapC sequence. Importantly, the most efficient inhibitors (Bri2 BRICHOS and DNAJB6) significantly reduce bacterial biofilm formation. This commonality of chaperone action may reflect the simplicity of functional amyloid formation, driven largely by primary nucleation, as well as the ability of non-bacterial chaperones to deploy their proteostatic capacities across biological kingdoms.
RESUMEN
Biofilms enable bacteria to colonize numerous ecological niches. Bacteria within a biofilm are protected by the extracellular matrix (ECM), of which the fibril-forming amyloid protein curli and polysaccharide cellulose are major components in members of Salmonella, Eschericha and Mycobacterium genus. A shortage of real-time detection methods has limited our understanding of how ECM production contributes to biofilm formation and pathogenicity. Here we present optotracing as a new semi-high throughput method for dynamic monitoring of Salmonella biofilm growth on air-solid interfaces. We show how an optotracer with binding-induced fluorescence acts as a dynamic fluorescent reporter of curli expression during biofilm formation on agar. Using spectrophotometry and microscopic imaging of fluorescence, we analyse in real-time the development of the curli architecture in relation to bacterial cells. With exceptional spatial and temporal precision, this revealed a well-structured, non-uniform distribution of curli organised in distally projecting radial channel patterns. Dynamic monitoring of the biofilm also showed defined regions undergoing different growth phases. ECM structures were found to assemble in regions of late exponential growth phase, suggesting that ECM forms on site after bacteria colonize the surface. As the optotracer biofilm method expedites screening of curli production, providing exceptional spatial-temporal understanding of the surface-associated biofilm lifestyle, this method adds a new technique to further our understanding of bacterial biofilms.
RESUMEN
We propose a computational investigation on the interaction mechanisms between SARS-CoV-2 spike protein and possible human cell receptors. In particular, we make use of our newly developed numerical method able to determine efficiently and effectively the relationship of complementarity between portions of protein surfaces. This innovative and general procedure, based on the representation of the molecular isoelectronic density surface in terms of 2D Zernike polynomials, allows the rapid and quantitative assessment of the geometrical shape complementarity between interacting proteins, which was unfeasible with previous methods. Our results indicate that SARS-CoV-2 uses a dual strategy: in addition to the known interaction with angiotensin-converting enzyme 2, the viral spike protein can also interact with sialic-acid receptors of the cells in the upper airways.
RESUMEN
Protein fibrillation is traditionally associated with misfolding, loss of functional phenotype, and gain of toxicity in neurodegenerative diseases. However, many organisms exploit fibrils in the form of functional amyloids (FA), as seen in bacteria, such as E. coli, Salmonella, Bacillus, and Pseudomonas. Here, we provide structural information and mechanistic data for fibrillation of the smallest amyloidogenic truncation unit along with the full-length version (FL) of the major amyloid protein FapC from Pseudomonas, predicted to consist of three ß-hairpin-forming imperfect repeats separated by disordered regions. Using a series of truncation mutants, we establish that the putative loops (linkers) increase the rate of aggregation. The minimal aggregation unit consisting of a single repeat with flanking disordered regions (R3C) aggregates in a pathway dominated by secondary nucleation, in contrast to the primary nucleation favored by full-length (FL) FapC. SAXS on FapC FL, R3C, and remaining truncation constructs resolves two major coexisting species in the fibrillation process, namely pre-fibrillar loosely aggregated monomers, and cylindrical, elliptical cross-section fibrils. Solid-state NMR spectra identified rigid parts of the FapC fibril. We assigned Cα-Cß chemical shifts, indicative of a predominant ß-sheet topology with some α-helix or loop chemical shifts. Our work emphasizes the complex nature of FapC fibrillation. In addition, we are able to deduce the importance of non-repeat regions (i.e., predicted loops), which enhance the amyloid protein aggregation and their influence on the polymorphism of the fibril architecture.
Asunto(s)
Amiloide/química , Proteínas Amiloidogénicas/metabolismo , Proteínas Bacterianas/metabolismo , Agregado de Proteínas , Pseudomonas/metabolismo , Secuencia de Aminoácidos , Proteínas Amiloidogénicas/genética , Proteínas Bacterianas/genética , Mutación , Pseudomonas/genéticaRESUMEN
Curli are functional amyloids that form a major part of the biofilm produced by many enterobacteriaceae. A multiprotein system around the outer membrane protein CsgG is in charge of the export and controlled propagation of the main Curli subunits, CsgA and CsgB. CsgF is essential for the linkage of the main amyloid-forming proteins to the cell surface. Here, we present a profound biochemical and biophysical characterization of recombinant CsgF, highlighted by a solution NMR structure of CsgF in the presence of dihexanoylphosphocholine micelles. Interestingly, CsgF contains large unstructured domains and does not show a globular fold. The data presented shed new light on the molecular mechanism of Curli amyloid surface attachment.
Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Pliegue de Proteína , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genéticaRESUMEN
Solid-state NMR spectroscopy (ssNMR) is uniquely suited for atomic-resolution structural investigations of large protein assemblies, which are notoriously difficult to study due to their insoluble and non-crystalline nature. However, assignment ambiguities because of limited resolution and spectral crowding are currently major hurdles that quickly increase with the length of the polypeptide chain. The line widths of ssNMR signals are independent of proteins size, making segmental isotope labeling a powerful approach to overcome this limitation. It allows a scalable reduction of signal overlap, aids the assignment of repetitive amino acid sequences, and can be easily combined with other selective isotope labeling strategies. Here we present a detailed protocol for segmental isotope labeling of insoluble proteins using protein trans-splicing. Our protocol exploits the ability of many insoluble proteins, such as amyloid fibrils, to fold correctly under in vitro conditions. In combination with the robust trans-splicing efficiency of the intein DnaE from Nostoc punctiforme, this allows for high yields of segmentally labeled protein required for ssNMR analysis.