Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Langmuir ; 37(17): 5099-5108, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33877849

RESUMEN

Linear alkylbenzene sulfonate (NaLAS) surfactant is often combined with polycarboxylate polymers in detergent formulations. However, the behavior of these aqueous surfactant-polymer systems in the absence of an added electrolyte is unreported. This work investigates the behavior of such systems using polarized light microscopy, small-angle X-ray scattering (SAXS), centrifugation, and 2H NMR techniques. A phase diagram at 50 °C is reported for 0-50 wt % NaLAS concentrations and 0-10 wt % polycarboxylate concentrations. The NaLAS-water system is micellar at concentrations <35 wt %, and a 2-phase micellar-lamellar system is seen at higher NaLAS levels, consistent with that reported by previous studies. As polymers are added at low surfactant concentrations (∼10 to 20 wt % NaLAS), a second optically isotropic phase is formed; this is thought to be a polymer-rich phase. Further addition of polycarboxylate leads to the formation of a lamellar phase. At high surfactant concentrations (>20 wt % NaLAS), the addition of a polymer induces a second lamellar phase. These observed behaviors are thought to arise as a result of depletion flocculation and salting-out effects. The observed lamellar phases adopt colloidal multilamellar vesicle (MLV) structures, and the average MLV radii were estimated using 2H NMR by probing the diffusion and anisotropy of D2O within the bilayers of the vesicles. The NMR results show that as the polymer concentration was increased from 0 to 10 wt %, an increase in the average multilamellar vesicle size from ∼200 to ∼500 nm was observed. This increase in the calculated average MLV radius likely results from depletion flocculation-induced MLV fusion.

2.
Chemistry ; 26(21): 4714-4733, 2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-31859404

RESUMEN

A series of bent-shaped 4-cyanoresorcinol bisterephthalates is reported. Some of these achiral compounds spontaneously form a short-pitch heliconical lamellar liquid-crystalline phase with incommensurate 3-layer pitch and the helix axis parallel to the layer normal. It is observed at the paraelectric-(anti)ferroelectric transition, if it coincides with the transition from random to uniform tilt and with the transition from anticlinic to synclinic tilt correlation of the molecules in the layers of the developing tilted smectic phase. For compounds with long chains the heliconical phase is only field-induced, but once formed it is stable in a distinct temperature range, even after switching off the field. The presence of the helix changes the phase properties and the switching mechanism from the naturally preferred rotation around the molecular long axis, which reverses the chirality, to a precession on a cone, which retains the chirality. These observations are explained by diastereomeric relations between two coexisting modes of superstructural chirality. One is the layer chirality, resulting from the combination of tilt and polar order, and the other one is the helical twist evolving between the layers. At lower temperature the helical structure is replaced by a non-tilted and ferreoelectric switching lamellar phase, providing an alternative non-chiral way for the transition from anticlinic to synclinic tilt.

3.
Chemphyschem ; 15(7): 1323-35, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24590686

RESUMEN

Several series of bent-core mesogens derived from 3,5-diphenyl-1,2,4-oxadiazole with or without lateral groups and with different length terminal chains at both ends, and polycatenar molecules with three to six alkoxy chains are synthesized and their mesomorphic behaviour is investigated by polarizing microscopy, differential scanning calorimetry, X-ray diffraction (XRD), dielectric, electro-optical and second-harmonic generation (SHG) experiments. Most compounds exhibit broad regions of skewed cybotactic nematic (NcybC ) and tilted smectic (SmC) phases with a strong tilt of the aromatic cores (up to 63°), but non-tilted SmA and NcybA phases are also observed for a compound that has only one terminal chain. The XRD patterns of the nematic phases of most of the compounds investigated indicate a 2D periodicity with short correlation length in the magnetically aligned samples. This is of importance for the general interpretation of the small-angle XRD splitting patterns typically observed for aligned samples of bent-core nematic phases. In most nematic phases one current peak is observed in the half period of an applied electric field, though no coherent signal is found in the SHG experiments. Based on additional electro-optical and dielectric results, the nematic phases are considered to be cybotactic nematic phases with local polar order, and show a dielectric reorientation of the polar domains. Only chiral nematic phases (NcybC *), but not blue phases, are obtained for compounds with one or two chiral (3S)-3,7-dimethyloctyloxy tail(s).


Asunto(s)
Cristales Líquidos/química , Oxadiazoles/química , Transición de Fase , Rastreo Diferencial de Calorimetría , Microscopía de Polarización , Difracción de Rayos X
4.
Soft Matter ; 10(27): 5003-16, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24894807

RESUMEN

A new bent-core mesogen combining a 4-cyanoresorcinol unit with two terephthalate based rod-like wings and terminated by two long alkyl chains, was synthesized and investigated by DSC, XRD, optical, electrooptical and dielectric methods. A series of liquid crystalline phases in the unique sequence SmA-SmA(P)-SmCPR-(M1/SmCPα)-SmCsPA-SmCPA-SmCaPA, mainly distinguished by the degree and mode of correlation of tilt and polar order, was observed. The development of polar order is associated with the emergence of a small tilt (<10°). With decreasing temperature the tilt changes from random (SmA) via synclinic to anticlinic, while the coherence length of the polar domains grows. This small tilt gives rise to an only weak layer coupling which is in competition with the polar coupling and this leads to new modes of self assembly in lamellar phases of bent-core mesogens, among them the SmCPR and the SmCPα phases. The SmCPR phase is an only slightly tilted biaxial smectic phase with randomized polar order and the SmCPα phase is a slightly tilted and antiferroelectric switching, but uniaxial smectic phase. For this phase a regular change of the in-plane polarization vector between the layers by an angle between >0° and <90° is proposed.

5.
J Chem Phys ; 134(4): 044525, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21280766

RESUMEN

To investigate the origin of the first order molecular kinetics of the most prominent, Debye-type polarization, a detailed dielectric relaxation study of 66.5, 40, and 20 mole% solutions of 5-methyl-2-hexanol in 2-methylpentane (2:1, 0.67:1, and 0.25:1 molar ratios) was performed. The Debye-type polarization remains prominent in the solutions, despite the extensive loss of intermolecular hydrogen bonds. At high temperatures, its contribution to permittivity extrapolates close to the statistically scaled values for the 2:1 solution. For others, the measured values of its contribution crossover the scaled values in a temperature plane. The faster relaxation process of about 4% magnitude has an asymmetric distribution of times in the solutions and, relative to those of the pure alcohol, their values decrease on heating more at high temperatures and less at low. This is attributed to an increase in the alcohol cluster size by consumption of monomers as well as the growth of smaller clusters as the solution is cooled. It is argued that structural fluctuation in solutions, as in the pure alcohol, is determined by the rates of both the Debye-type and the faster polarizations in the ultraviscous state.

6.
Micromachines (Basel) ; 12(3)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33671001

RESUMEN

Liquid crystals are valuable materials for applications in beam steering devices. In this paper, an overview of the use of liquid crystals in the field of adaptive optics specifically for beam steering and lensing devices is presented. The paper introduces the properties of liquid crystals that have made them useful in this field followed by a more detailed discussion of specific liquid crystal devices that act as switchable optical components of refractive and diffractive types. The relative advantages and disadvantages of the different devices and techniques are summarised.

7.
Nat Commun ; 12(1): 4717, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34354049

RESUMEN

Ferroelectric liquid crystals remain of interest for display and spatial light modulators because they exhibit significantly faster optical response times than nematics. However, smectic layers are sensitive to shock-induced flow and are usually permanently displaced once a well-aligned sample is disrupted, rendering such devices inoperable. We introduce a vertical alignment geometry combined with a surface-relief grating to control both the smectic layer and director orientations. This mode undergoes "self-healing" of the smectic layers after disruption by shock-induced flow. Sub-millisecond switching between optically distinct states is demonstrated using in-plane electric fields. Self-healing occurs within a second after being disrupted by shock, wherein both the layer and director realign without additional external stimulus. The route to material improvements for optimised devices is discussed, promising faster spatial light modulators for high-speed adaptive optics, micro-displays for virtual/augmented reality and telecommunications with inherent shock stability.

8.
Phys Rev E ; 99(6-1): 062704, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31330613

RESUMEN

The heliconical twist-bend nematic (N_{TB}) phase is a promising candidate for novel electro-optic and photonic applications. However, the phase generally exists at elevated temperatures and across a narrow temperature interval, limiting its implementation in device fabrication, which would ideally require the liquid crystal phase to be stable at room temperature. Here we report the formation of room-temperature N_{TB} phases by in situ photopolymerization. A complete phase diagram of the liquid crystal and monomer mixtures is presented and the nature of the polymerized samples is discussed in detail. In contrast to samples before polymerization-where the N_{TB} phases exist at elevated temperatures and across temperature intervals of width <10 °C-all photopolymerized N_{TB} samples are found to be stable at room temperature and exist over a temperature interval of up to 80 °C. Scanning electron microscopy of the polymerized N_{TB} phase shows that the polymer strands assemble at an angle with respect to the direction of the helical axis. This suggests that photopolymerized N_{TB} phases could be used to facilitate the tilt angle measurements in the twist-bend nematic phase.

9.
Phys Rev E ; 97(4-1): 042702, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29758680

RESUMEN

Tilted smectic liquid crystal phases such as the smectic-C phase seen in calamitic liquid crystals are usually treated using the assumption of biaxial orthorhombic symmetry. However, the smectic-C phase has monoclinic symmetry, thereby allowing disassociation of the principal optic and dielectric axes based on symmetry and invariance principles. This is demonstrated here by comparing optical and dielectric measurements for two materials with highly first-order direct transitions from nematic to smectic-C phases. The results show a high difference between the orientations of the principal axes sets, which is interpreted as the existence of two distinct cone angles for optical and dielectric frequencies. Both materials exhibit an increasing degree of monoclinic behavior with decreasing temperature. Due to fast switching speeds, ferroelectric smectic-C* materials are important for fast modulators and LCoS devices, where the dielectric biaxiality influences device operation.

10.
Phys Rev E ; 96(5-1): 052703, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29347724

RESUMEN

A detailed investigation of the thermal and dielectric properties of a series of binary mixtures exhibiting the nematic (N) and twist-bend nematic (N_{TB}) liquid crystal phases is presented. The mixtures consist of an achiral, dimeric liquid crystal CB7CB, which forms the nematic and twist-bend nematic phases, and a calamitic liquid crystal 5CB, which shows the nematic phase. As the concentration of the calamitic liquid crystal is increased, the transition temperatures decrease linearly, and the width of the nematic phase increases. The enthalpies of phase transitions obtained from DSC measurements show that on increasing the concentration of 5CB in the binary mixtures, the enthalpy associated with the N-N_{TB} phase transitions reduces considerably compared to a clear first-order N-N_{TB} transition in pure CB7CB. The real and imaginary parts of the dielectric permittivity are measured as a function of frequency from 100 Hz to 2 MHz in the nematic and twist-bend nematic phases in planar and homeotropic devices. A significant decrease in the average dielectric permittivity as a function of temperature for mixtures forming the N_{TB} phase is observed. Measurements of the imaginary part of the dielectric permittivity show a relaxation peak in the measured frequency window for all of the mixtures exhibiting the N_{TB} phase. The activation energy associated with this relaxation process is calculated and is shown to remain constant irrespective of the composition of the mixtures.

11.
Adv Mater ; 25(15): 2186-91, 2013 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-23427137

RESUMEN

A new liquid crystalline (LC) phase with uniform tilt, local polar order and capability of symmetry breaking is found for a bent-core mesogen combining a 4-cyanoresorcinol unit with two azobenzene wings. The combination of local polar order and long range synclinic tilt in this SmC(s)P(R) phase leads, under special conditions, to macroscopic domains with opposite chirality, though the molecules themselves are achiral.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA