Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Circulation ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695173

RESUMEN

BACKGROUND: The ubiquitin-proteasome system regulates protein degradation and the development of pulmonary arterial hypertension (PAH), but knowledge about the role of deubiquitinating enzymes in this process is limited. UCHL1 (ubiquitin carboxyl-terminal hydrolase 1), a deubiquitinase, has been shown to reduce AKT1 (AKT serine/threonine kinase 1) degradation, resulting in higher levels. Given that AKT1 is pathological in pulmonary hypertension, we hypothesized that UCHL1 deficiency attenuates PAH development by means of reductions in AKT1. METHODS: Tissues from animal pulmonary hypertension models as well as human pulmonary artery endothelial cells from patients with PAH exhibited increased vascular UCHL1 staining and protein expression. Exposure to LDN57444, a UCHL1-specific inhibitor, reduced human pulmonary artery endothelial cell and smooth muscle cell proliferation. Across 3 preclinical PAH models, LDN57444-exposed animals, Uchl1 knockout rats (Uchl1-/-), and conditional Uchl1 knockout mice (Tie2Cre-Uchl1fl/fl) demonstrated reduced right ventricular hypertrophy, right ventricular systolic pressures, and obliterative vascular remodeling. Lungs and pulmonary artery endothelial cells isolated from Uchl1-/- animals exhibited reduced total and activated Akt with increased ubiquitinated Akt levels. UCHL1-silenced human pulmonary artery endothelial cells displayed reduced lysine(K)63-linked and increased K48-linked AKT1 levels. RESULTS: Supporting experimental data, we found that rs9321, a variant in a GC-enriched region of the UCHL1 gene, is associated with reduced methylation (n=5133), increased UCHL1 gene expression in lungs (n=815), and reduced cardiac index in patients (n=796). In addition, Gadd45α (an established demethylating gene) knockout mice (Gadd45α-/-) exhibited reduced lung vascular UCHL1 and AKT1 expression along with attenuated hypoxic pulmonary hypertension. CONCLUSIONS: Our findings suggest that UCHL1 deficiency results in PAH attenuation by means of reduced AKT1, highlighting a novel therapeutic pathway in PAH.

2.
J Biol Chem ; 291(42): 21869-21879, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27539851

RESUMEN

Tumors rely on multiple nutrients to meet cellular bioenergetics and macromolecular synthesis demands of rapidly dividing cells. Although the role of glucose and glutamine in cancer metabolism is well understood, the relative contribution of acetate metabolism remains to be clarified. We show that glutamine supplementation is not sufficient to prevent loss of cell viability in a subset of glucose-deprived melanoma cells, but synergizes with acetate to support cell survival. Glucose-deprived melanoma cells depend on both oxidative phosphorylation and acetate metabolism for cell survival. Acetate supplementation significantly contributed to maintenance of ATP levels in glucose-starved cells. Unlike acetate, short chain fatty acids such as butyrate and propionate failed to prevent loss of cell viability from glucose deprivation. In vivo studies revealed that in addition to nucleo-cytoplasmic acetate assimilating enzyme ACSS2, mitochondrial ACSS1 was critical for melanoma tumor growth in mice. Our data indicate that acetate metabolism may be a potential therapeutic target for BRAF mutant melanoma.


Asunto(s)
Acetatos/metabolismo , Glucosa/metabolismo , Melanoma/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Ácido Butírico/metabolismo , Línea Celular Tumoral , Femenino , Glucosa/genética , Xenoinjertos , Humanos , Melanoma/genética , Melanoma/patología , Melanoma/terapia , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mutación , Trasplante de Neoplasias , Fosforilación Oxidativa , Propionatos/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo
3.
J Cell Biochem ; 117(4): 853-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26375488

RESUMEN

Hypoxia-inducible factor-1alpha (HIF1a) is a key transcriptional regulator that enables cellular metabolic adaptation to low levels of oxygen. Multiple mechanisms, including lysosomal degradation, control the levels of HIF1a protein. Here we show that HIF1a protein degradation is resistant to lysosomal inhibition and that HIF1a is associated with the Golgi compartment in melanoma cells. Although pharmacological inhibitors of prolyl hydroxylation, neddylation and the proteasome inhibited degradation of HIF1a, attenuation of lysosomal activity with chloroquine did not alter the levels of HIF1a or its association with Golgi. Pharmacological disruption of Golgi resulted in nuclear accumulation of HIF1a. However, blockade of ER-Golgi protein transport in hypoxia reduced the transcript levels of HIF1a target genes. These findings suggest a possible role for the oxygen-dependent protein folding process from the ER-Golgi compartment in fine-tuning HIF1a transcriptional output.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Aparato de Golgi/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Melanocitos/efectos de los fármacos , Oxígeno/farmacología , Aminoácidos Dicarboxílicos/farmacología , Hipoxia de la Célula , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Cloroquina/farmacología , Ciclopentanos/farmacología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Melanocitos/metabolismo , Melanocitos/patología , Prolil Hidroxilasas/genética , Prolil Hidroxilasas/metabolismo , Inhibidores de Prolil-Hidroxilasa/farmacología , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína , Transporte de Proteínas , Proteolisis/efectos de los fármacos , Pirimidinas/farmacología , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Transcripción Genética
4.
Signal Transduct Target Ther ; 8(1): 108, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36894537

RESUMEN

Cardiopulmonary complications are major drivers of mortality caused by the SARS-CoV-2 virus. Interleukin-18, an inflammasome-induced cytokine, has emerged as a novel mediator of cardiopulmonary pathologies but its regulation via SARS-CoV-2 signaling remains unknown. Based on a screening panel, IL-18 was identified amongst 19 cytokines to stratify mortality and hospitalization burden in patients hospitalized with COVID-19. Supporting clinical data, administration of SARS-CoV-2 Spike 1 (S1) glycoprotein or receptor-binding domain (RBD) proteins into human angiotensin-converting enzyme 2 (hACE2) transgenic mice induced cardiac fibrosis and dysfunction associated with higher NF-κB phosphorylation (pNF-κB) and cardiopulmonary-derived IL-18 and NLRP3 expression. IL-18 inhibition via IL-18BP resulted in decreased cardiac pNF-κB and improved cardiac fibrosis and dysfunction in S1- or RBD-exposed hACE2 mice. Through in vivo and in vitro work, both S1 and RBD proteins induced NLRP3 inflammasome and IL-18 expression by inhibiting mitophagy and increasing mitochondrial reactive oxygenation species. Enhancing mitophagy prevented Spike protein-mediated IL-18 expression. Moreover, IL-18 inhibition reduced Spike protein-mediated pNF-κB and EC permeability. Overall, the link between reduced mitophagy and inflammasome activation represents a novel mechanism during COVID-19 pathogenesis and suggests IL-18 and mitophagy as potential therapeutic targets.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Ratones , Animales , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/metabolismo , COVID-19/genética , Inflamasomas/genética , Inflamasomas/metabolismo , Interleucina-18/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Mitofagia/genética , Inflamación/genética , Inflamación/metabolismo , Citocinas
5.
Leukemia ; 36(3): 821-833, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34599272

RESUMEN

Little is known of hematopoietic stem (HSC) and progenitor (HPC) cell self-renewal. The role of Brahma (BRM), a chromatin remodeler, in HSC function is unknown. Bone marrow (BM) from Brm-/- mice manifested increased numbers of long- and short-term HSCs, GMPs, and increased numbers and cycling of functional HPCs. However, increased Brm-/- BM HSC numbers had decreased secondary and tertiary engraftment, suggesting BRM enhances HSC self-renewal. Valine was elevated in lineage negative Brm-/- BM cells, linking intracellular valine with Brm expression. Valine enhanced HPC colony formation, replating of human cord blood (CB) HPC-derived colonies, mouse BM and human CB HPC survival in vitro, and ex vivo expansion of normal mouse BM HSCs and HPCs. Valine increased oxygen consumption rates of WT cells. BRM through CD98 was linked to regulated import of branched chain amino acids, such as valine, in HPCs. Brm-/- LSK cells exhibited upregulated interferon response/cell cycle gene programs. Effects of BRM depletion are less apparent on isolated HSCs compared to HSCs in the presence of HPCs, suggesting cell extrinsic effects on HSCs. Thus, intracellular valine is regulated by BRM expression in HPCs, and the BRM/valine axis regulates HSC and HPC self-renewal, proliferation, and possibly differentiation fate decisions.


Asunto(s)
Autorrenovación de las Células , Ensamble y Desensamble de Cromatina , Células Madre Hematopoyéticas/citología , Factores de Transcripción/metabolismo , Valina/metabolismo , Animales , Células Cultivadas , Eliminación de Gen , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción/genética
6.
J Virol ; 83(5): 2274-84, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19109394

RESUMEN

The papillomavirus E2 proteins regulate viral replication, gene transcription, and genome maintenance by interacting with other viral and host proteins. From a yeast two-hybrid screen, we identified the cellular protein Tax1BP1 as a novel binding partner of human papillomavirus type 18 (HPV18) E2. Tax1BP1 also interacts with the HPV16 and bovine papillomavirus type 1 (BPV1) E2 proteins, with the C-terminal region of Tax1BP1 interacting with the N-terminal transactivation domain of BPV1 E2. Tax1BP1 complexes with p300 and acts synergistically as a coactivator with p300 to enhance E2-dependent transcription. Using chromatin immunoprecipitation assays, we show that Tax1BP1 and E2 localize to the long control region on the BPV1 genome. Tax1BP1 was recently reported to bind ubiquitin and to function as an essential component of an A20 ubiquitin-editing complex. We demonstrate that Tax1BP1 plays a role in the regulation of the steady-state level of E2 by preventing its proteasomal degradation. These studies provide new insights into the regulation of E2 functions.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Papillomaviridae/genética , Transcripción Genética , Proteínas Virales/metabolismo , Animales , Papillomavirus Bovino 1/genética , Papillomavirus Bovino 1/metabolismo , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Regulación Viral de la Expresión Génica , Células HeLa , Papillomavirus Humano 11/genética , Papillomavirus Humano 11/metabolismo , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/metabolismo , Humanos , Ratones , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Papillomaviridae/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , ARN Interferente Pequeño , Técnicas del Sistema de Dos Híbridos , Ubiquitinación , Proteínas Virales/genética
7.
PLoS One ; 13(2): e0191419, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29394289

RESUMEN

Reliance on aerobic glycolysis is one of the hallmarks of cancer. Although pyruvate kinase M2 (PKM2) is a key mediator of glycolysis in cancer cells, lack of selective agents that target PKM2 remains a challenge in exploiting metabolic pathways for cancer therapy. We report that unlike its structural analog shikonin, a known inhibitor of PKM2, lapachol failed to induce non-apoptotic cell death ferroxitosis in hypoxia. However, melanoma cells treated with lapachol showed a dose-dependent inhibition of glycolysis and a corresponding increase in oxygen consumption. Accordingly, in silico studies revealed a high affinity-binding pocket for lapachol on PKM2 structure. Lapachol inhibited PKM2 activity of purified enzyme as well as in melanoma cell extracts. Blockade of glycolysis by lapachol in melanoma cells led to decreased ATP levels and inhibition of cell proliferation. Furthermore, perturbation of glycolysis in melanoma cells with lapachol sensitized cells to mitochondrial protonophore and promoted apoptosis. These results present lapachol as an inhibitor of PKM2 to interrogate metabolic plasticity in tumor cells.


Asunto(s)
Glucólisis/efectos de los fármacos , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Naftoquinonas/farmacología , Piruvato Quinasa/antagonistas & inhibidores , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Humanos , Melanoma/patología , Mitocondrias/metabolismo , Modelos Moleculares , Consumo de Oxígeno/efectos de los fármacos , Piruvato Quinasa/química
8.
Melanoma Res ; 27(5): 411-416, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28489680

RESUMEN

The universal second messenger cAMP regulates numerous cellular processes. Although the cAMP-signaling pathway leads to induction of gene transcription, it remains unknown whether this pathway contributes toward suppression of transcription. Here, we show that blockade of cAMP signaling using MDL12330A led to an increase in PUMA transcript levels, but not p21 in melanoma cells. cAMP downstream component Epac activation was essential for suppression of PUMA transcription as an Epac agonist reversed the effects of MDL12330A. These results suggest that transcriptional repression is one of the functions of the cAMP-Epac signaling pathway.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/biosíntesis , AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Melanoma/genética , Melanoma/metabolismo , Proteínas Proto-Oncogénicas/biosíntesis , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular Tumoral , AMP Cíclico/antagonistas & inhibidores , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/biosíntesis , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Factores de Intercambio de Guanina Nucleótido/agonistas , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Iminas/farmacología , Melanoma/patología , Proteínas Proto-Oncogénicas/genética , Sistemas de Mensajero Secundario/efectos de los fármacos , Sistemas de Mensajero Secundario/genética , Neoplasias Cutáneas/patología , Transcripción Genética/efectos de los fármacos
9.
Oncotarget ; 5(24): 12694-703, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25587028

RESUMEN

Reliance on glycolysis is a characteristic of malignancy, yet the development of resistance to BRAF inhibitors in melanoma is associated with gain of mitochondrial function. Concurrent attenuation of oxidative phosphorylation and HIF-1α/PKM2-dependent glycolysis promotes a non-apoptotic, iron- and oxygen-dependent cell death that we term ferroxitosis. The redox cycling agent menadione causes a robust increase in oxygen consumption, accompanied by significant loss of intracellular ATP and rapid cell death. Conversely, either hypoxic adaptation or iron chelation prevents menadione-induced ferroxitosis. Ectopic expression of K213Q HIF-1α mutant blunts the effects of menadione. However, knockdown of HIF-1α or PKM2 restores menadione-induced cytotoxicity in hypoxia. Similarly, exposure of melanoma cells to shikonin, a menadione analog and a potential PKM2 inhibitor, is sufficient to induce ferroxitosis under hypoxic conditions. Collectively, our findings reveal that ferroxitosis curtails metabolic plasticity in melanoma.


Asunto(s)
Proteínas Portadoras/metabolismo , Glucólisis , Quelantes del Hierro/farmacología , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Proteínas de la Membrana/metabolismo , Hormonas Tiroideas/metabolismo , Vitamina K 3/farmacología , Animales , Muerte Celular/fisiología , Hipoxia de la Célula/fisiología , Línea Celular Tumoral , Proliferación Celular/fisiología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Fosforilación Oxidativa , Distribución Aleatoria , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas de Unión a Hormona Tiroide
10.
J Invest Dermatol ; 133(9): 2247-54, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23370537

RESUMEN

The Bcl homology-3 (BH3)-only protein p53 upregulated modulator of apoptosis (PUMA) counters Bcl-2 family anti-apoptotic proteins and promotes apoptosis. Although PUMA is a key regulator of apoptosis, the post-transcriptional mechanisms that control PUMA protein stability are not understood. We show that a lysosome-independent activity of chloroquine (CQ) prevents degradation of PUMA protein, promotes apoptosis, and reduces the growth of melanoma xenografts in mice. Compared with wild-type PUMA, a BH3 domain-deleted PUMA protein showed impaired decay in melanoma cells. Fusion of the BH3 domain to a heterologous protein led to its rapid turnover that was inhibited by CQ. Although both CQ and inhibitors of lysosomal proteases stalled autophagy, only CQ stabilized PUMA protein and promoted apoptosis. Our results reveal a lysosomal protease-independent activity of CQ that selectively promotes apoptosis in melanoma cells.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/efectos de los fármacos , Cloroquina/farmacología , Melanoma/patología , Proteínas Proto-Oncogénicas/metabolismo , Neoplasias Cutáneas/patología , Animales , Antimaláricos/farmacología , Antineoplásicos/farmacología , Proteínas Reguladoras de la Apoptosis/química , Células HCT116 , Humanos , Lisosomas/metabolismo , Células MCF-7 , Melanoma/tratamiento farmacológico , Ratones , Ratones Endogámicos NOD , Ratones SCID , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas c-bcl-2/química , Neoplasias Cutáneas/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Melanoma Res ; 23(3): 213-7, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23624367

RESUMEN

The tumor suppressor p53 plays a central role in preventing tumor development by promoting transcription of genes that stall cell cycle and induce cell death. Although the majority of melanomas express wild-type p53, the molecular mechanisms that impede its activation remain unclear. We previously reported that the SUMO E3 ligase PIASy and the histone acetyltransferase Tip60 signaling cascade promote p53-dependent autophagy and apoptosis. We hypothesized that impairment in this signaling attenuates p53, thus disabling its apoptotic function in melanoma. Here, we show that human melanoma patient samples and cell lines maintain p53 expression but PIASy and/or Tip60 are frequently lost. We observed dysregulation of Tip60-mediated p53 transcription program in melanoma cell lines. Reconstitution of PIASy and Tip60 in melanoma cells increased genotoxic stress-induced apoptosis. Our study provides a clinical link of how sumoylation signaling may activate p53-mediated cell death in melanoma.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Melanoma/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Histona Acetiltransferasas/genética , Humanos , Inmunohistoquímica , Lisina Acetiltransferasa 5 , Melanoma/genética , Melanoma/patología , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas Inhibidoras de STAT Activados/genética , Transducción de Señal , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Proteína p53 Supresora de Tumor/genética
12.
Cell Cycle ; 11(14): 2717-28, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22751435

RESUMEN

Posttranslational modifications of p53 integrate diverse stress signals and regulate its activity, but their combinatorial contribution to overall p53 function is not clear. We investigated the roles of lysine (K) acetylation and sumoylation on p53 and their relation to apoptosis and autophagy. Here we describe the collaborative role of the SUMO E3 ligase PIASy and the lysine acetyltransferase Tip60 in p53-mediated autophagy. PIASy binding to p53 and PIASy-activated Tip60 lead to K386 sumoylation and K120 acetylation of p53, respectively. Even though these two modifications are not dependent on each other, together they act as a "binary death signal" to promote cytoplasmic accumulation of p53 and execution of PUMA-independent autophagy. PIASy-induced Tip60 sumoylation augments p53 K120 acetylation and apoptosis. In addition to p14(ARF) inactivation, impairment in this intricate signaling may explain why p53 mutations are not found in nearly 50% of malignancies.


Asunto(s)
Autofagia , Histona Acetiltransferasas/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Apoptosis , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular , Células HCT116 , Humanos , Lisina Acetiltransferasa 5 , Mutación , Proteínas de Unión a Poli-ADP-Ribosa , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Sumoilación , Proteína p14ARF Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética
13.
J Virol ; 81(5): 2213-20, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17151122

RESUMEN

Papillomavirus E2 is a sequence-specific DNA binding protein that regulates transcription and replication of the viral genome. The transcriptional activities of E2 are typically evaluated by transient transfection of nonreplicating E2-dependent reporters. We sought to address whether E2 activates transcription in an episomal context and its potential interaction with the chromatin remodeling proteins. Using an Epstein-Barr virus-based episomal reporter, we demonstrate that E2 stimulates transcription from an E2-dependent promoter in a chromatin context. This activation is enhanced by the presence of proteins associated with SWI/SNF complexes, which are ATP-dependent chromatin remodeling enzymes. We show that exogenous expression of the Brm ATPase enhances E2 activity in SWI/SNF-deficient cell lines and that the amino-terminal transactivation domain of E2 mediates association with the Brm complex in vivo. Using chromatin immunoprecipitation assays, we demonstrate that Brm enhances promoter occupancy by E2 in an episomal context. Our results demonstrate that E2 activates transcription from an episomal reporter system and reveal a novel property of E2 in collaborating with the Brm chromatin remodeling complex in enhancing transcriptional activation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Factores de Transcripción/metabolismo , Proteínas Virales/metabolismo , Animales , Sitios de Unión , Papillomavirus Bovino 1/genética , Papillomavirus Bovino 1/metabolismo , Bovinos , Línea Celular , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Células HeLa , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Humanos , Ratones , Células 3T3 NIH , Proteínas Oncogénicas Virales/química , Proteínas Oncogénicas Virales/genética , Unión Proteica , Estructura Terciaria de Proteína , Factores de Transcripción/genética , Activación Transcripcional , Proteínas Virales/química , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA