Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Oncol ; 12: 956926, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35936735

RESUMEN

The tumor microenvironment facilitates cancer progression and therapeutic resistance. Tumor collagens and their architecture play an essential role in this process. However, little is known about the mechanisms by which tumor cells sense and respond to this extracellular matrix environment. Recently, the Discoidin Domain Receptor 1 (DDR1), a collagen receptor and tyrosine kinase has emerged as an important player in this malignant process, although the underlying signaling mechanisms remain unclear. Here, we review new DDR1 functions in tumor dormancy following dissemination, immune exclusion and therapeutic resistance induced by stromal collagens deposition. We also discuss the signaling mechanisms behind these tumor activities and the therapeutic strategies aiming at targeting these collagens-dependent tumor responses.

2.
Cancers (Basel) ; 12(8)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32717909

RESUMEN

Src, originally identified as an oncogene, is a membrane-anchored tyrosine kinase and the Src family kinase (SFK) prototype. SFKs regulate the signalling induced by a wide range of cell surface receptors leading to epithelial cell growth and adhesion. In the intestine, the SFK members Src, Fyn and Yes regulate epithelial cell proliferation and migration during tissue regeneration and transformation, thus implicating conserved and specific functions. In patients with colon cancer, SFK activity is a marker of poor clinical prognosis and a potent driver of metastasis formation. These tumorigenic activities are linked to SFK capacity to promote the dissemination and tumour-initiating capacities of epithelial tumour cells. However, it is unclear how SFKs promote colon tumour formation and metastatic progression because SFK-encoding genes are unfrequently mutated in human cancer. Here, we review recent findings on SFK signalling during intestinal homeostasis, regeneration and tumorigenesis. We also describe the key nongenetic mechanisms underlying SFK tumour activities in colorectal cancer, and discuss how these mechanisms could be exploited in therapeutic strategies to target SFK signalling in metastatic colon cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA