Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Pharmacol Rev ; 73(4): 298-487, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34753794

RESUMEN

Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.


Asunto(s)
Receptores de Glutamato , Receptores Ionotrópicos de Glutamato , Animales , Sistema Nervioso Central , Ácido Glutámico , Humanos , Neurotransmisores , Receptores Ionotrópicos de Glutamato/genética
2.
J Neurosci ; 40(10): 2000-2014, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019829

RESUMEN

The activation of neuronal plasma membrane Ca2+ channels stimulates many intracellular responses. Scaffolding proteins can preferentially couple specific Ca2+ channels to distinct downstream outputs, such as increased gene expression, but the molecular mechanisms that underlie the exquisite specificity of these signaling pathways are incompletely understood. Here, we show that complexes containing CaMKII and Shank3, a postsynaptic scaffolding protein known to interact with L-type calcium channels (LTCCs), can be specifically coimmunoprecipitated from mouse forebrain extracts. Activated purified CaMKIIα also directly binds Shank3 between residues 829 and 1130. Mutation of Shank3 residues 949Arg-Arg-Lys951 to three alanines disrupts CaMKII binding in vitro and CaMKII association with Shank3 in heterologous cells. Our shRNA/rescue studies revealed that Shank3 binding to both CaMKII and LTCCs is important for increased phosphorylation of the nuclear CREB transcription factor and expression of c-Fos induced by depolarization of cultured hippocampal neurons. Thus, this novel CaMKII-Shank3 interaction is essential for the initiation of a specific long-range signal from LTCCs in the plasma membrane to the nucleus that is required for activity-dependent changes in neuronal gene expression during learning and memory.SIGNIFICANCE STATEMENT Precise neuronal expression of genes is essential for normal brain function. Proteins involved in signaling pathways that underlie activity-dependent gene expression, such as CaMKII, Shank3, and L-type calcium channels, are often mutated in multiple neuropsychiatric disorders. Shank3 and CaMKII were previously shown to bind L-type calcium channels, and we show here that Shank3 also binds to CaMKII. Our data show that each of these interactions is required for depolarization-induced phosphorylation of the CREB nuclear transcription factor, which stimulates the expression of c-Fos, a neuronal immediate early gene with key roles in synaptic plasticity, brain development, and behavior.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Núcleo Celular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Animales , Regulación de la Expresión Génica/fisiología , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos , Transducción de Señal/fisiología
3.
J Physiol ; 599(2): 453-469, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32004381

RESUMEN

Fast excitatory synaptic transmission in the mammalian brain is largely mediated by AMPA-type ionotropic glutamate receptors (AMPARs), which are activated by the neurotransmitter glutamate. In synapses, the function of AMPARs is tuned by their auxiliary subunits, a diverse set of membrane proteins associated with the core pore-forming subunits of the AMPARs. Each auxiliary subunit provides distinct functional modulation of AMPARs, ranging from regulation of trafficking to shaping ion channel gating kinetics. Understanding the molecular mechanism of the function of these complexes is key to decoding synaptic modulation and their global roles in cognitive activities, such as learning and memory. Here, we review the structural and molecular complexity of AMPAR-auxiliary subunit complexes, as well as their functional diversity in different brain regions. We suggest that the recent structural information provides new insights into the molecular mechanisms underlying synaptic functions of AMPAR-auxiliary subunit complexes.


Asunto(s)
Receptores AMPA , Transmisión Sináptica , Animales , Ácido Glutámico , Activación del Canal Iónico , Subunidades de Proteína , Receptores AMPA/metabolismo , Sinapsis/metabolismo
4.
J Biol Chem ; 295(6): 1743-1753, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31915246

RESUMEN

Calcium-mediated signaling through inositol 1,4,5-triphosphate receptors (IP3Rs) is essential for the regulation of numerous physiological processes, including fertilization, muscle contraction, apoptosis, secretion, and synaptic plasticity. Deregulation of IP3Rs leads to pathological calcium signaling and is implicated in many common diseases, including cancer and neurodegenerative, autoimmune, and metabolic diseases. Revealing the mechanism of activation and inhibition of this ion channel will be critical to an improved understanding of the biological processes that are controlled by IP3Rs. Here, we report structural findings of the human type-3 IP3R (IP3R-3) obtained by cryo-EM (at an overall resolution of 3.8 Å), revealing an unanticipated regulatory mechanism where a loop distantly located in the primary sequence occupies the IP3-binding site and competitively inhibits IP3 binding. We propose that this inhibitory mechanism must differ qualitatively among IP3R subtypes because of their diverse loop sequences, potentially serving as a key molecular determinant of subtype-specific calcium signaling in IP3Rs. In summary, our structural characterization of human IP3R-3 provides critical insights into the mechanistic function of IP3Rs and into subtype-specific regulation of these important calcium-regulatory channels.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Péptidos/metabolismo , Sitios de Unión , Señalización del Calcio , Microscopía por Crioelectrón , Humanos , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inhibidores , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/ultraestructura , Modelos Moleculares , Conformación Proteica
5.
J Biol Chem ; 293(26): 10381-10391, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29752403

RESUMEN

The kidney maintains the internal milieu by regulating the retention and excretion of proteins, ions, and small molecules. The glomerular podocyte forms the slit diaphragm of the ultrafiltration filter, whose damage leads to progressive kidney failure and focal segmental glomerulosclerosis (FSGS). The canonical transient receptor potential 6 (TRPC6) ion channel is expressed in the podocyte, and mutations in its cytoplasmic domain cause FSGS in humans. In vitro evaluation of disease-causing mutations in TRPC6 has revealed that these genetic alterations result in abnormal ion channel gating. However, the mechanism whereby the cytoplasmic domain modulates TRPC6 function is largely unknown. Here, we report a cryo-EM structure of the cytoplasmic domain of murine TRPC6 at 3.8 Å resolution. The cytoplasmic fold of TRPC6 is characterized by an inverted dome-like chamber pierced by four radial horizontal helices that converge into a vertical coiled-coil at the central axis. Unlike other TRP channels, TRPC6 displays a unique domain swap that occurs at the junction of the horizontal helices and coiled-coil. Multiple FSGS mutations converge at the buried interface between the vertical coiled-coil and the ankyrin repeats, which form the dome, suggesting these regions are critical for allosteric gating modulation. This functionally critical interface is a potential target for drug design. Importantly, dysfunction in other family members leads to learning deficits (TRPC1/4/5) and ataxia (TRPC3). Our data provide a structural framework for the mechanistic investigation of the TRPC family.


Asunto(s)
Microscopía por Crioelectrón , Citoplasma/metabolismo , Canal Catiónico TRPC6/química , Canal Catiónico TRPC6/metabolismo , Animales , Células HEK293 , Humanos , Ratones , Mutación , Dominios Proteicos , Canal Catiónico TRPC6/genética
6.
J Biol Chem ; 293(41): 16102-16114, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30139744

RESUMEN

The transient receptor potential ion channels support Ca2+ permeation in many organs, including the heart, brain, and kidney. Genetic mutations in transient receptor potential cation channel subfamily C member 3 (TRPC3) are associated with neurodegenerative diseases, memory loss, and hypertension. To better understand the conformational changes that regulate TRPC3 function, we solved the cryo-EM structures for the full-length human TRPC3 and its cytoplasmic domain (CPD) in the apo state at 5.8- and 4.0-Å resolution, respectively. These structures revealed that the TRPC3 transmembrane domain resembles those of other TRP channels and that the CPD is a stable module involved in channel assembly and gating. We observed the presence of a C-terminal domain swap at the center of the CPD where horizontal helices (HHs) transition into a coiled-coil bundle. Comparison of TRPC3 structures revealed that the HHs can reside in two distinct positions. Electrophysiological analyses disclosed that shortening the length of the C-terminal loop connecting the HH with the TRP helices increases TRPC3 activity and that elongating the length of the loop has the opposite effect. Our findings indicate that the C-terminal loop affects channel gating by altering the allosteric coupling between the cytoplasmic and transmembrane domains. We propose that molecules that target the HH may represent a promising strategy for controlling TRPC3-associated neurological disorders and hypertension.


Asunto(s)
Activación del Canal Iónico , Canales Catiónicos TRPC/química , Regulación Alostérica , Repetición de Anquirina , Células HEK293 , Humanos , Mutación , Conformación Proteica en Hélice alfa , Dominios Proteicos , Canales Catiónicos TRPC/genética
7.
J Neurosci ; 37(8): 2216-2233, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28130356

RESUMEN

Characterizing the functional impact of novel mutations linked to autism spectrum disorder (ASD) provides a deeper mechanistic understanding of the underlying pathophysiological mechanisms. Here we show that a de novo Glu183 to Val (E183V) mutation in the CaMKIIα catalytic domain, identified in a proband diagnosed with ASD, decreases both CaMKIIα substrate phosphorylation and regulatory autophosphorylation, and that the mutated kinase acts in a dominant-negative manner to reduce CaMKIIα-WT autophosphorylation. The E183V mutation also reduces CaMKIIα binding to established ASD-linked proteins, such as Shank3 and subunits of l-type calcium channels and NMDA receptors, and increases CaMKIIα turnover in intact cells. In cultured neurons, the E183V mutation reduces CaMKIIα targeting to dendritic spines. Moreover, neuronal expression of CaMKIIα-E183V increases dendritic arborization and decreases both dendritic spine density and excitatory synaptic transmission. Mice with a knock-in CaMKIIα-E183V mutation have lower total forebrain CaMKIIα levels, with reduced targeting to synaptic subcellular fractions. The CaMKIIα-E183V mice also display aberrant behavioral phenotypes, including hyperactivity, social interaction deficits, and increased repetitive behaviors. Together, these data suggest that CaMKIIα plays a previously unappreciated role in ASD-related synaptic and behavioral phenotypes.SIGNIFICANCE STATEMENT Many autism spectrum disorder (ASD)-linked mutations disrupt the function of synaptic proteins, but no single gene accounts for >1% of total ASD cases. The molecular networks and mechanisms that couple the primary deficits caused by these individual mutations to core behavioral symptoms of ASD remain poorly understood. Here, we provide the first characterization of a mutation in the gene encoding CaMKIIα linked to a specific neuropsychiatric disorder. Our findings demonstrate that this ASD-linked de novo CAMK2A mutation disrupts multiple CaMKII functions, induces synaptic deficits, and causes ASD-related behavioral alterations, providing novel insights into the synaptic mechanisms contributing to ASD.


Asunto(s)
Trastorno del Espectro Autista , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Dendritas/metabolismo , Mutación/genética , Transmisión Sináptica/genética , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Trastorno del Espectro Autista/fisiopatología , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/ultraestructura , Células Cultivadas , Cicloheximida/farmacología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Conducta Exploratoria/fisiología , Femenino , Regulación de la Expresión Génica/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ratas , Ratas Sprague-Dawley , Receptores AMPA/genética , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo
8.
J Biol Chem ; 292(42): 17324-17336, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-28916724

RESUMEN

Neuronal excitation can induce new mRNA transcription, a phenomenon called excitation-transcription (E-T) coupling. Among several pathways implicated in E-T coupling, activation of voltage-gated L-type Ca2+ channels (LTCCs) in the plasma membrane can initiate a signaling pathway that ultimately increases nuclear CREB phosphorylation and, in most cases, expression of immediate early genes. Initiation of this long-range pathway has been shown to require recruitment of Ca2+-sensitive enzymes to a nanodomain in the immediate vicinity of the LTCC by an unknown mechanism. Here, we show that activated Ca2+/calmodulin-dependent protein kinase II (CaMKII) strongly interacts with a novel binding motif in the N-terminal domain of CaV1 LTCC α1 subunits that is not conserved in CaV2 or CaV3 voltage-gated Ca2+ channel subunits. Mutations in the CaV1.3 α1 subunit N-terminal domain or in the CaMKII catalytic domain that largely prevent the in vitro interaction also disrupt CaMKII association with intact LTCC complexes isolated by immunoprecipitation. Furthermore, these same mutations interfere with E-T coupling in cultured hippocampal neurons. Taken together, our findings define a novel molecular interaction with the neuronal LTCC that is required for the initiation of a long-range signal to the nucleus that is critical for learning and memory.


Asunto(s)
Canales de Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Núcleo Celular/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , Animales , Canales de Calcio/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Núcleo Celular/genética , Femenino , Aprendizaje/fisiología , Memoria/fisiología , Dominios Proteicos , Ratas , Ratas Sprague-Dawley
9.
J Physiol ; 595(20): 6517-6539, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28815591

RESUMEN

KEY POINTS: The AMPA-type ionotropic glutamate receptors (AMPARs) mediate the majority of excitatory synaptic transmission and their function impacts learning, cognition and behaviour. The gating of AMPARs occurs in milliseconds, precisely controlled by a variety of auxiliary subunits that are expressed differentially in the brain, but the difference in mechanisms underlying AMPAR gating modulation by auxiliary subunits remains elusive and is investigated. The elements of the AMPAR that are functionally recruited by auxiliary subunits, stargazin and cornichon 3, are located not only in the extracellular domains but also in the lipid-accessible surface of the AMPAR. We reveal that the two auxiliary subunits require a shared surface on the transmembrane domain of the AMPAR for their function, but the gating is influenced by this surface in opposing directions for each auxiliary subunit. Our results provide new insights into the mechanistic difference of AMPAR modulation by auxiliary subunits and a conceptual framework for functional engineering of the complex. ABSTRACT: During excitatory synaptic transmission, various structurally unrelated transmembrane auxiliary subunits control the function of AMPA receptors (AMPARs), but the underlying mechanisms remain unclear. We identified lipid-exposed residues in the transmembrane domain (TMD) of the GluA2 subunit of AMPARs that are critical for the function of AMPAR auxiliary subunits, stargazin (Stg) and cornichon 3 (CNIH3). These residues are essential for stabilizing the AMPAR-CNIH3 complex in detergents and overlap with the contacts made between GluA2 TMD and Stg in the cryoEM structures. Mutating these residues had opposite effects on gating modulation and complex stability when Stg- and CNIH3-bound AMPARs were compared. Specifically, in detergent the GluA2-A793F formed an unstable complex with CNIIH3 but in the membrane the GluA2-A793F-CNIH3 complex expressed a gain of function. In contrast, the GluA2-A793F-Stg complex was stable, but had diminished gating modulation. GluA2-C528L destabilized the AMPAR-CNIH3 complex but stabilized the AMPAR-Stg complex, with overall loss of function in gating modulation. Furthermore, loss-of-function mutations in this TMD region cancelled the effects of a gain-of-function Stg carrying mutation in its extracellular loop, demonstrating that both the extracellular and the TMD elements contribute independently to gating modulation. The elements of AMPAR functionally recruited by auxiliary subunits are, therefore, located not only in the extracellular domains but also in the lipid accessible surface of the AMPAR. The TMD surface we defined is a potential target for auxiliary subunit-specific compounds, because engineering of this hotspot induces opposing functional outcomes by Stg and CNIH3. The collection of mutant-phenotype mapping provides a framework for engineering AMPAR gating using auxiliary subunits.


Asunto(s)
Canales de Calcio/fisiología , Receptores AMPA/fisiología , Canales de Calcio/genética , Línea Celular , Membrana Celular , Humanos , Activación del Canal Iónico , Mutación , Dominios Proteicos , Receptores AMPA/genética
10.
J Neurosci ; 34(36): 12104-20, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25186755

RESUMEN

Cornichon homologs (CNIHs) are AMPA-type glutamate receptor (AMPAR) auxiliary subunits that modulate AMPAR ion channel function and trafficking. Mechanisms underlying this interaction and functional modulation of the receptor complex are currently unclear. Here, using proteins expressed from mouse and rat cDNA, we show that CNIH-3 forms a stable complex with tetrameric AMPARs and contributes to the transmembrane density in single-particle electron microscopy structures. Peptide array-based screening and in vitro mutagenesis identified two clusters of conserved membrane-proximal residues in CNIHs that contribute to AMPAR binding. Because CNIH-1 binds to AMPARs but modulates gating at a significantly lower magnitude compared with CNIH-3, these conserved residues mediate a direct interaction between AMPARs and CNIHs. In addition, residues in the extracellular loop of CNIH-2/3 absent in CNIH-1/4 are critical for both AMPAR interaction and gating modulation. On the AMPAR extracellular domains, the ligand-binding domain and possibly a stretch of linker, connecting the ligand-binding domain to the fourth membrane-spanning segment, is the principal contact point with the CNIH-3 extracellular loop. In contrast, the membrane-distal N-terminal domain is less involved in AMPAR gating modulation by CNIH-3 and AMPAR binding to CNIH-3. Collectively, our results identify conserved residues in the membrane-proximal region of CNIHs that contribute to AMPAR binding and an additional unique segment in the CNIH-2/3 extracellular loop required for both physical interaction and gating modulation of the AMPAR. Consistent with the dissociable properties of binding and gating modulation, we identified a mutant CNIH-3 that preserves AMPAR binding capability but has attenuated activity of gating modulation.


Asunto(s)
Receptores AMPA/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Femenino , Células HEK293 , Humanos , Activación del Canal Iónico , Masculino , Datos de Secuencia Molecular , Unión Proteica , Ratas , Receptores AMPA/química , Receptores AMPA/genética
11.
Nat Struct Mol Biol ; 31(4): 688-700, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38409505

RESUMEN

Alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid receptors (AMPARs) are cation-selective ion channels that mediate most fast excitatory neurotransmission in the brain. Although their gating mechanism has been studied extensively, understanding how cations traverse the pore has remained elusive. Here we investigated putative ion and water densities in the open pore of Ca2+-permeable AMPARs (rat GRIA2 flip-Q isoform) at 2.3-2.6 Å resolution. We show that the ion permeation pathway attains an extracellular Ca2+ binding site (site-G) when the channel gate moves into the open configuration. Site-G is highly selective for Ca2+ over Na+, favoring the movement of Ca2+ into the selectivity filter of the pore. Seizure-related N619K mutation, adjacent to site-G, promotes channel opening but attenuates Ca2+ binding and thus diminishes Ca2+ permeability. Our work identifies the importance of site-G, which coordinates with the Q/R site of the selectivity filter to ensure the preferential transport of Ca2+ through the channel pore.


Asunto(s)
Receptores AMPA , Ratas , Animales , Receptores AMPA/genética , Mutación , Cationes , Transporte Iónico , Sitios de Unión
12.
PLoS One ; 18(5): e0285343, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37205674

RESUMEN

The flagellar motor supports bacterial chemotaxis, a process that allows bacteria to move in response to their environment. A central feature of this motor is the MS-ring, which is composed entirely of repeats of the FliF subunit. This MS-ring is critical for the assembly and stability of the flagellar switch and the entire flagellum. Despite multiple independent cryoEM structures of the MS-ring, there remains a debate about the stoichiometry and organization of the ring-building motifs (RBMs). Here, we report the cryoEM structure of a Salmonella MS-ring that was purified from the assembled flagellar switch complex (MSC-ring). We term this the 'post-assembly' state. Using 2D class averages, we show that under these conditions, the post-assembly MS-ring can contain 32, 33, or 34 FliF subunits, with 33 being the most common. RBM3 has a single location with C32, C33, or C34 symmetry. RBM2 is found in two locations with RBM2inner having C21 or C22 symmetry and an RBM2outer-RBM1 having C11 symmetry. Comparison to previously reported structures identifies several differences. Most strikingly, we find that the membrane domain forms 11 regions of discrete density at the base of the structure rather than a contiguous ring, although density could not be unambiguously interpreted. We further find density in some previously unresolved areas, and we assigned amino acids to those regions. Finally, we find differences in interdomain angles in RBM3 that affect the diameter of the ring. Together, these investigations support a model of the flagellum with structural plasticity, which may be important for flagellar assembly and function.


Asunto(s)
Proteínas Bacterianas , Proteínas de la Membrana , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Bacterias/metabolismo , Flagelos/metabolismo , Conformación Proteica
13.
Nat Commun ; 14(1): 6799, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884493

RESUMEN

Transmembrane AMPA receptor regulatory proteins (TARPs) and germ cell-specific gene 1-like protein (GSG1L) are claudin-type AMPA receptor (AMPAR) auxiliary subunits that profoundly regulate glutamatergic synapse strength and plasticity. While AMPAR-TARP complexes have been extensively studied, less is known about GSG1L-containing AMPARs. Here, we show that GSG1L's spatiotemporal expression, native interactome and allosteric sites are distinct. GSG1L generally expresses late during brain development in a region-specific manner, constituting about 5% of all AMPAR complexes in adulthood. While GSG1L can co-assemble with TARPs or cornichons (CNIHs), it also assembles as the sole auxiliary subunit. Unexpectedly, GSG1L acts through two discrete evolutionarily-conserved sites on the agonist-binding domain with a weak allosteric interaction at the TARP/KGK site to slow desensitization, and a stronger interaction at a different site that slows recovery from desensitization. Together, these distinctions help explain GSG1L's evolutionary past and how it fulfills a unique signaling role within glutamatergic synapses.


Asunto(s)
Proteínas , Receptores AMPA , Receptores AMPA/metabolismo , Sitio Alostérico , Proteínas/metabolismo , Sinapsis/metabolismo
14.
Nat Commun ; 14(1): 1659, 2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966141

RESUMEN

AMPA glutamate receptors (AMPARs) mediate excitatory neurotransmission throughout the brain. Their signalling is uniquely diversified by brain region-specific auxiliary subunits, providing an opportunity for the development of selective therapeutics. AMPARs associated with TARP γ8 are enriched in the hippocampus, and are targets of emerging anti-epileptic drugs. To understand their therapeutic activity, we determined cryo-EM structures of the GluA1/2-γ8 receptor associated with three potent, chemically diverse ligands. We find that despite sharing a lipid-exposed and water-accessible binding pocket, drug action is differentially affected by binding-site mutants. Together with patch-clamp recordings and MD simulations we also demonstrate that ligand-triggered reorganisation of the AMPAR-TARP interface contributes to modulation. Unexpectedly, one ligand (JNJ-61432059) acts bifunctionally, negatively affecting GluA1 but exerting positive modulatory action on GluA2-containing AMPARs, in a TARP stoichiometry-dependent manner. These results further illuminate the action of TARPs, demonstrate the sensitive balance between positive and negative modulatory action, and provide a mechanistic platform for development of both positive and negative selective AMPAR modulators.


Asunto(s)
Canales de Calcio , Receptores AMPA , Receptores AMPA/metabolismo , Ligandos , Canales de Calcio/metabolismo , Transmisión Sináptica
15.
J Neurosci ; 31(10): 3565-79, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21389213

RESUMEN

The precise knowledge of the subunit assembly process of NMDA receptors (NMDA-Rs) is essential to understand the receptor architecture and underlying mechanism of channel function. Because NMDA-Rs are obligatory heterotetramers requiring the GluN1 subunit, it is critical to investigate how GluN1 and GluN2 type subunits coassemble into tetramers. By combining approaches in cell biology, biochemistry, single particle electron microscopy, and x-ray crystallography, we report the mechanisms and phenotypes of mutant GluN1 subunits that are defective in receptor maturation. The T110A mutation in the N-terminal domain (NTD) of the GluN1 promotes heterodimerization between the NTDs of GluN1 and GluN2, whereas the Y109C mutation in the adjacent residue stabilizes the homodimer of the NTD of GluN1. The crystal structure of the NTD of GluN1 revealed the mechanism underlying the biochemical properties of these mutants. Effects of these mutations on the maturation of heteromeric NMDA-Rs were investigated using a receptor trafficking assay. Our results suggest that the NTDs of the GluN1 subunit initially form homodimers and the subsequent dimer dissociation is critical for forming heterotetrameric NMDA-Rs containing GluN2 subunits, defining a molecular determinant for receptor assembly. The domain arrangement of the dimeric NTD of GluN1 is unique among the ionotropic glutamate receptors and predicts that the structure and mechanism around the NTDs of NMDA-Rs are different from those of the homologous AMPA and kainate receptors.


Asunto(s)
Subunidades de Proteína/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Línea Celular , Células Cultivadas , Cromatografía en Gel , Cristalografía por Rayos X , Humanos , Conformación Proteica , Subunidades de Proteína/química , Receptores de N-Metil-D-Aspartato/química
16.
J Neurosci ; 30(7): 2728-40, 2010 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-20164357

RESUMEN

Subunit assembly governs regulation of AMPA receptor (AMPA-R) synaptic delivery and determines biophysical parameters of the ion channel. However, little is known about the molecular pathways of this process. Here, we present single-particle EM three-dimensional structures of dimeric biosynthetic intermediates of the GluA2 subunit of AMPA-Rs. Consistent with the structures of intact tetramers, the N-terminal domains of the biosynthetic intermediates form dimers. Transmembrane domains also dimerize despite the two ligand-binding domains (LBDs) being separated. A significant difference was detected between the dimeric structures of the wild type and the L504Y mutant, a point mutation that blocks receptor trafficking and desensitization. In contrast to the wild type, whose LBD is separated, the LBD of the L504Y mutant was detected as a single density. Our results provide direct structural evidence that separation of the LBD within the intact dimeric subunits is critical for efficient tetramerization in the endoplasmic reticulum and further trafficking of AMPA-Rs. The contribution of stargazin on the subunit assembly of AMPA-R was examined. Our data suggest that stargazin affects AMPA-R trafficking at a later stage of receptor maturation.


Asunto(s)
Canales de Calcio/metabolismo , Receptores AMPA/metabolismo , Canales de Calcio/química , Línea Celular Transformada , Células Cultivadas , Embrión de Mamíferos , Proteínas Fluorescentes Verdes/genética , Hipocampo/citología , Humanos , Leucina/genética , Microscopía Confocal/métodos , Microscopía Electrónica de Rastreo/métodos , Modelos Moleculares , Conformación Molecular , Mutación/genética , Neuronas/efectos de los fármacos , Neuronas/fisiología , Dominios y Motivos de Interacción de Proteínas/genética , Dominios y Motivos de Interacción de Proteínas/fisiología , Estructura Terciaria de Proteína , Receptores AMPA/química , Receptores AMPA/genética , Receptores AMPA/ultraestructura , Fracciones Subcelulares/metabolismo , Factores de Tiempo , Transfección/métodos , Tirosina/genética
17.
Nature ; 433(7025): 545-9, 2005 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-15690046

RESUMEN

Ionotropic glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system. Their modulation is believed to affect learning and memory, and their dysfunction has been implicated in the pathogenesis of neurological and psychiatric diseases. Despite a wealth of functional data, little is known about the intact, three-dimensional structure of these ligand-gated ion channels. Here, we present the structure of native AMPA receptors (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid; AMPA-Rs) purified from rat brain, as determined by single-particle electron microscopy. Unlike the homotetrameric recombinant GluR2 (ref. 3), the native heterotetrameric AMPA-R adopted various conformations, which reflect primarily a variable separation of the two dimeric extracellular amino-terminal domains. Members of the stargazin/TARP family of transmembrane proteins co-purified with AMPA-Rs and contributed to the density representing the transmembrane region of the complex. Glutamate and cyclothiazide markedly altered the conformational equilibrium of the channel complex, suggesting that desensitization is related to separation of the N-terminal domains. These data provide a glimpse of the conformational changes of an important ligand-gated ion channel of the brain.


Asunto(s)
Receptores AMPA/metabolismo , Receptores AMPA/ultraestructura , Animales , Benzotiadiazinas/farmacología , Encéfalo , Membrana Celular/química , Membrana Celular/metabolismo , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Ligandos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Estructura Cuaternaria de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína/efectos de los fármacos , Ratas , Receptores AMPA/química
18.
Nature ; 424(6949): 677-81, 2003 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-12904794

RESUMEN

Synaptic transmission from excitatory nerve cells in the mammalian brain is largely mediated by AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-type glutamate receptors located at the surface of dendritic spines. The abundance of postsynaptic AMPA receptors correlates with the size of the synapse and the dimensions of the dendritic spine head. Moreover, long-term potentiation is associated with the formation of dendritic spines as well as synaptic delivery of AMPA receptors. The molecular mechanisms that coordinate AMPA receptor delivery and spine morphogenesis are unknown. Here we show that overexpression of the glutamate receptor 2 (GluR2) subunit of AMPA receptors increases spine size and density in hippocampal neurons, and more remarkably, induces spine formation in GABA-releasing interneurons that normally lack spines. The extracellular N-terminal domain (NTD) of GluR2 is responsible for this effect, and heterologous fusion proteins of the NTD of GluR2 inhibit spine morphogenesis. We propose that the NTD of GluR2 functions at the cell surface as part of a receptor-ligand interaction that is important for spine growth and/or stability.


Asunto(s)
Dendritas/fisiología , Hipocampo/citología , Receptores AMPA/química , Receptores AMPA/metabolismo , Animales , Células COS , Tamaño de la Célula , Células Cultivadas , Hipocampo/metabolismo , Humanos , Interneuronas/citología , Interneuronas/metabolismo , Estructura Terciaria de Proteína , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Receptores AMPA/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ácido gamma-Aminobutírico/metabolismo
19.
Cell Rep ; 32(3): 107921, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32697982

RESUMEN

The anterior thalamus (AT) is critical for memory formation, processing navigational information, and seizure initiation. However, the molecular mechanisms that regulate synaptic function of AT neurons remain largely unexplored. We report that AMPA receptor auxiliary subunit GSG1L controls short-term plasticity in AT synapses that receive inputs from the cortex, but not in those receiving inputs from other pathways. A canonical auxiliary subunit stargazin co-exists in these neurons but is functionally absent from corticothalamic synapses. In GSG1L knockout mice, AT neurons exhibit hyperexcitability and the animals have increased susceptibility to seizures, consistent with a negative regulatory role of GSG1L. We hypothesize that negative regulation of synaptic function by GSG1L plays a critical role in maintaining optimal excitation in the AT.


Asunto(s)
Corteza Cerebral/metabolismo , Claudinas/metabolismo , Subunidades de Proteína/metabolismo , Convulsiones/metabolismo , Sinapsis/inmunología , Tálamo/metabolismo , Animales , Susceptibilidad a Enfermedades , Ratones Noqueados , Plasticidad Neuronal , Neuronas/metabolismo
20.
Structure ; 28(4): 393-405.e4, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32027819

RESUMEN

Metazoan retromer (VPS26/VPS35/VPS29) associates with sorting nexins on endosomal tubules to sort proteins to the trans-Golgi network or plasma membrane. Mechanisms of metazoan retromer assembly remain undefined. We combine single-particle cryoelectron microscopy with biophysical methods to uncover multiple oligomer structures. 2D class averages reveal mammalian heterotrimers; dimers of trimers; tetramers of trimers; and flat chains. These species are further supported by biophysical solution studies. We provide reconstructions of all species, including key sub-structures (∼5 Å resolution). Local resolution variation suggests that heterotrimers and dimers adopt multiple conformations. Our structures identify a flexible, highly conserved electrostatic dimeric interface formed by VPS35 subunits. We generate structure-based mutants to disrupt this interface in vitro. Equivalent mutations in yeast demonstrate a mild cargo-sorting defect. Our data suggest the metazoan retromer is an adaptable and plastic scaffold that accommodates interactions with different sorting nexins to sort multiple cargoes from endosomes their final destinations.


Asunto(s)
Endosomas/metabolismo , Multimerización de Proteína , Proteínas de Transporte Vesicular/química , Animales , Microscopía por Crioelectrón , Humanos , Ratones , Mutación , Dominios Proteicos , Transporte de Proteínas , Saccharomyces cerevisiae , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA