Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Sensors (Basel) ; 22(5)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35271141

RESUMEN

Recent technological innovations, such as material printing techniques and surface functionalization, have significantly accelerated the development of new free-form sensors for next-generation flexible, wearable, and three-dimensional electronic devices. Ceramic film sensors, in particular, are in high demand for the production of reliable flexible devices. Various ceramic films can now be formed on plastic substrates through the development of low temperature fabrication processes for ceramic films, such as photocrystallization and transferring methods. Among flexible sensors, strain sensors for precise motion detection and photodetectors for biomonitoring have seen the most research development, but other fundamental sensors for temperature and humidity have also begun to grow. Recently, flexible gas and electrochemical sensors have attracted a lot of attention from a new real-time monitoring application that uses human breath and perspiration to accurately diagnose presymptomatic states. The development of a low-temperature fabrication process of ceramic film sensors and related components will complete the chemically stable and reliable free-form sensing devices by satisfying the demands that can only be addressed by flexible metal and organic components.


Asunto(s)
Dispositivos Electrónicos Vestibles , Cerámica , Electrónica/métodos , Humanos , Sudor
2.
Angew Chem Int Ed Engl ; 60(32): 17601-17607, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34018300

RESUMEN

A photocharge/discharge strategy is proposed to initiate the WO3 photoelectrode and suppress the main charge recombination, which remarkably improves the photoelectrochemical (PEC) performance. The photocharged WO3 surrounded by a 8-10 nm overlayer and oxygen vacancies could be operated more than 25 cycles with 50 h durability without significant decay on PEC activity. A photocharged WO3 /CuO photoanode exhibits an outstanding photocurrent of 3.2 mA cm-2 at 1.23 VRHE with a low onset potential of 0.6 VRHE , which is one of the best performances of p-n heterojunction structure. Using nonadiabatic molecular dynamics combined with time-domain DFT, we clarify the prolonged charge carrier lifetime of photocharged WO3 , as well as how electronic systems of photocharged WO3 /CuO semiconductors enable the effective photoinduced electrons transfer from WO3 into CuO. This work provides a feasible route to address excessive defects existed in photoelectrodes without causing extra recombination.

3.
Chemistry ; 26(42): 9261-9276, 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32427365

RESUMEN

This review summarizes the use of photoreactions that replace conventional heating processes for growing oxide thin films from chemical solutions. In particular, this review outlines key variables in photoreactions that affect epitaxial and polycrystalline thin film growth, including precursor materials, laser wavelength, laser fluence, and carbon. In addition, the features of the photoreaction process that can be controlled at a low temperature by oxygen non-stoichiometry are examined. Likewise, functions that are neither achieved by developing a gradient structure nor controlled by a thermal equilibrium reaction are detailed. Two new concepts are presented, known as photoreaction of nanoparticles (PRNP) and photoreaction of a hybrid solutions (PRHS), in which crystal nuclei are pre-dispersed in a metal-organic compound film. This method has successfully produced flexible phosphor films used as resistor or thermistor electronic components. Finally, thin film growth using different light sources such as flash lamps and femtosecond lasers (fs) is explored.

4.
Nano Lett ; 15(10): 6815-20, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26340509

RESUMEN

We apply high-energy proton ion-implantation to modify TiO2 nanotubes selectively at their tops. In the proton-implanted region, we observe the creation of intrinsic cocatalytic centers for photocatalytic H2-evolution. We find proton implantation to induce specific defects and a characteristic modification of the electronic properties not only in nanotubes but also on anatase single crystal (001) surfaces. Nevertheless, for TiO2 nanotubes a strong synergetic effect between implanted region (catalyst) and implant-free tube segment (absorber) can be obtained.

5.
Chem Soc Rev ; 43(7): 2027-41, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-23959465

RESUMEN

The fabrication of thin oxide films at low temperatures using simple processes has been a significant challenge associated with expanding the potential applications of these materials. Recent developments have demonstrated that the photo-assisted chemical solution deposition (PACSD) process offers a promising means of solving these difficulties, allowing high volume, on-demand production of variable sample sizes using an advantageous wet process. A better understanding of the crystal growth phenomena associated with this process, however, is required to enable various oxide thin films to be prepared using this new concept. Under pulsed ultraviolet (UV) laser irradiation, crystal growth has been confirmed to proceed by near-instantaneous photothermal heating and photochemical effects at the reaction interface. Vacuum UV lamp irradiation is also a useful means of generating oxide nuclei, since it results in effective chemical bond cleavage and simultaneously produces reactive oxidant (O3/O((1)D)) species. In this review, the nucleation and growth mechanisms which occur during the PACSD process are introduced and discussed and we examine the future possible applications of this process.

6.
Phys Chem Chem Phys ; 16(48): 26901-8, 2014 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-25377662

RESUMEN

We have prepared nearly perfect hexagonal m-plane-oriented RbxWO3 films on (010)-oriented RbLaNb2O7 layers. The prepared bilayer films showed Rb diffusion from the RbLaNb2O7 seed layers, and we obtained uniaxially oriented RbxWO3/Rb1-yLaNb2O7 photoanodes. The RbxWO3/Rb1-yLaNb2O7 bilayer photoanodes exhibited enhanced photoelectrochemical water splitting compared with the RbxWO3 and RbLaNb2O7 monolayer photoanodes. Furthermore, we clearly demonstrated that the high crystal quality of the heterojunction significantly enhanced water splitting. The photocurrent density of the nearly perfectly oriented RbxWO3/Rb1-yLaNb2O7 photoanode that we prepared was 9.4-fold that of an unoriented bilayer photoanode. This increase was attributed to the inhibition of photo-excited charge recombination and stimulated electron transfer derived from low grain-boundary resistance.

7.
Angew Chem Int Ed Engl ; 53(51): 14201-5, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25327934

RESUMEN

The high-pressure hydrogenation of commercially available anatase or anatase/rutile TiO2 powder can create a photocatalyst for H2 evolution that is highly effective and stable without the need for any additional co-catalyst. This activation effect cannot be observed for rutile; however, for anatase/rutile mixtures, a strong synergistic effect can be found (similar to results commonly observed for noble-metal-decorated TiO2). EPR and PL measurements indicated the intrinsic co-catalytic activation of anatase TiO2 to be due to specific defect centers formed during hydrogenation. These active centers can be observed specifically for high-pressure hydrogenation; other common reduction treatments do not result in this effect.

8.
Phys Chem Chem Phys ; 15(34): 14384-9, 2013 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-23881113

RESUMEN

The effective annealing times (t(eff)) for nucleating various oxides from an amorphous matrix under nanosecond pulsed laser irradiation have been determined. The oxides, which had perovskite, bixbyite, anatase, and pyrochlore structures, showed similar t(eff) values for crystal nucleation of around 60 ns. This indicates that the effective annealing time is a good universal value for evaluating pulsed laser-induced oxide nucleation. Time-resolved resistance measurements of tin-doped In2O3 thin films under pulsed laser irradiation showed that crystal nucleation and rapid growth proceeded spontaneously with an instantaneous temperature rise.

9.
Materials (Basel) ; 16(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36903231

RESUMEN

High-quality, uniaxially oriented, and flexible PbZr0.52Ti0.48O3 (PZT) films were fabricated on flexible RbLaNb2O7/BaTiO3 (RLNO/BTO)-coated polyimide (PI) substrates. All layers were fabricated by a photo-assisted chemical solution deposition (PCSD) process using KrF laser irradiation for photocrystallization of the printed precursors. The Dion-Jacobson perovskite RLNO thin films on flexible PI sheets were employed as seed layers for the uniaxially oriented growth of PZT films. To obtain the uniaxially oriented RLNO seed layer, a BTO nanoparticle-dispersion interlayer was fabricated to avoid PI substrate surface damage under excess photothermal heating, and the RLNO has been orientedly grown only at around 40 mJ·cm-2 at 300 °C. The prepared RLNO seed layer on the BTO/PI substrate showed very high (010)-oriented growth with a very high Lotgering factor (F(010) = 1.0). By using the flexible (010)-oriented RLNO film on BTO/PI, PZT film crystal growth was possible via KrF laser irradiation of a sol-gel-derived precursor film at 50 mJ·cm-2 at 300 °C. The obtained PZT film showed highly (001)-oriented growth on the flexible plastic substrates with F(001) = 0.92 without any micro-cracks. The RLNO was only uniaxial-oriented grown at the top part of the RLNO amorphous precursor layer. The oriented grown and amorphous phases of RLNO would have two important roles for this multilayered film formation: (1) triggering orientation growth of the PZT film at the top and (2) the stress relaxation of the underneath BTO layer to suppress the micro-crack formation. This is the first time that PZT films have been crystallized directly on flexible substrates. The combined processes of photocrystallization and chemical solution deposition are a cost-effective and highly on-demand process for the fabrication of flexible devices.

10.
Sci Adv ; 9(1): eade4589, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36598972

RESUMEN

Photoelectrochemical (PEC) water splitting that functions in pH-neutral electrolyte attracts increasing attention to energy demand sustainability. Here, we propose a strategy to in situ form a NiB layer by tuning the composition of the neutral electrolyte with the additions of nickel and borate species, which improves the PEC performance of the BiVO4 photoanode. The NiB/BiVO4 exhibits a photocurrent density of 6.0 mA cm-2 at 1.23 VRHE with an onset potential of 0.2 VRHE under 1 sun illumination. The photoanode displays a photostability of over 600 hours in a neutral electrolyte. The additive of Ni2+ in the electrolyte, which efficiently inhibits the dissolution of NiB, can accelerate the photogenerated charge transfer and enhance the water oxidation kinetics. The borate species with B─O bonds act as a promoter of catalyst activity by accelerating proton-coupled electron transfer. The synergy effect of both species suppresses the surface charge recombination and inhibits the photocorrosion of BiVO4.

11.
Nat Commun ; 14(1): 2640, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37156781

RESUMEN

Although much effort has been devoted to improving photoelectrochemical water splitting of hematite (α-Fe2O3) due to its high theoretical solar-to-hydrogen conversion efficiency of 15.5%, the low applied bias photon-to-current efficiency remains a huge challenge for practical applications. Herein, we introduce single platinum atom sites coordination with oxygen atom (Pt-O/Pt-O-Fe) sites into single crystalline α-Fe2O3 nanoflakes photoanodes (SAs Pt:Fe2O3-Ov). The single-atom Pt doping of α-Fe2O3 can induce few electron trapping sites, enhance carrier separation capability, and boost charge transfer lifetime in the bulk structure as well as improve charge carrier injection efficiency at the semiconductor/electrolyte interface. Further introduction of surface oxygen vacancies can suppress charge carrier recombination and promote surface reaction kinetics, especially at low potential. Accordingly, the optimum SAs Pt:Fe2O3-Ov photoanode exhibits the photoelectrochemical performance of 3.65 and 5.30 mA cm-2 at 1.23 and 1.5 VRHE, respectively, with an applied bias photon-to-current efficiency of 0.68% for the hematite-based photoanodes. This study opens an avenue for designing highly efficient atomic-level engineering on single crystalline semiconductors for feasible photoelectrochemical applications.

12.
ACS Appl Mater Interfaces ; 13(48): 57132-57141, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34823359

RESUMEN

In the quest for efficient use of solar energy to produce high-value-added chemicals, we first achieved the photoelectrochemical (PEC) diketonization of naphthalene, using a BiVO4/WO3 photoanode, to obtain naphthoquinone, an important pharmaceutical raw material with excellent efficiency by solar energy conversion. In the electrochemical (EC) reaction using F-doped SnO2 (FTO) substrates and a 0.5 M H2SO4 H2O-acetone (60 vol %) mixed solution containing 5 mM naphthalene, we produced a small amount of naphthoquinone evolution in the dark. However, naphthoquinone (ηNQ)'s Faradic efficiency and its evolution rate at 1.7 VAg/AgCl were only 28.5% and 0.48 µmol·cm-2·h-1, respectively. The PEC reaction using a WO3 photoanode had very low efficiency for naphthalene diketonization, with low ηNQ and evolution rate values at 1.1 VAg/AgCl of 0.3% and 0.039 µmol·cm-2·h-1, respectively. In contrast, the BiVO4/WO3 photoanode strongly enhanced the PEC reaction, and the ηNQ and evolution rates at 1.1 VAg/AgCl were boosted up to 37.5% and 4.7 µmol·cm-2·h-1, respectively. The evolution rate of the PEC reaction in the BiVO4/WO3 photoanode was 10 times higher than that of the EC reaction with the FTO substrate regardless of the very low bias voltage. This result suggests that the BiVO4-based photoanode was very efficient for the selective oxidation of naphthalene even in acid media because of the acetone-mixed electrolyte's anti-photocorrosion effect and the multilayering of WO3 and BiVO4. At a naphthalene concentration of 20 mM, the naphthoquinone evolution rate reached its maximum value of 7.1 µmol·cm-2·h-1. Although ηNQ tended to decrease with the increase in the electric charge, it reached 100% at a low bias voltage of 0.7 VAg/AgCl. An intensity-modulated photocurrent spectroscopy analysis indicated the rate constant of charge transfer at the photoanode surface to the naphthalene molecules was strongly enhanced at a low bias voltage of 0.7-1.1 VAg/AgCl, resulting in the high ηNQ value. The acid-resistant BiVO4/WO3 photoanode functioned in acetone-mixed electrolytes enabled the realization of a new PEC oxidation reaction driven by solar energy to produce high-value-added pharmaceutical raw materials.

13.
ACS Appl Mater Interfaces ; 13(10): 12079-12090, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33660498

RESUMEN

We have revealed for the first time that BiVO4 photoanodes can be used even in strong acid media by mixing organic solvents into the electrolyte and depositing multilayers with a WO3 bottom layer. In general, the BiVO4 photoanodes are photocorrosive, especially in acid solutions. However, this shortcoming has been overcome using a combination of the two aforementioned modifications. We deduced that the contribution of each mixing organic solvent for the anti-photocorrosion of BiVO4 in sulfuric acid solutions can be evaluated on the basis of a new empirical indicator that incorporates molecular density, the Hansen solubility parameter, and molecular polarizability. Acetone and tert-butyl alcohol were especially promising solvents for stabilizing BiVO4 in acid media. We confirmed that the mixed organic solvents stabilized surface-emergent Bi oxide species as a passivation layer, which was generated via multilayering with a WO3 bottom layer. During heat treatment in the fabrication process, W weakly diffused into the BiVO4 layer and a Bi oxide layer was formed on the outermost surface because of the Bi segregation that arose from the charge compensation between W6+ and V5+ in the BiVO4 lattice. The surface Bi oxide layer, which was protected by the mixed organic solvents, steadily served as a passivation layer for anti-photocorrosion of the underlying BiVO4 layer. We have confirmed that the BiVO4/WO3 photoanodes in acetone-mixed aqueous sulfuric acid solution reliably functioned for a photoelectrochemical reaction under simulated sunlight illumination, and photoelectrochemical production of S2O82- ions was confirmed under light irradiation at λ > 480 nm. These results suggest that the BiVO4-based photoanodes have significant potential for use in acid media in conjunction with very straightforward modifications.

14.
ACS Appl Mater Interfaces ; 12(32): 36600-36608, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32805791

RESUMEN

We fabricated highly flexible Sr- and Ni-doped perovskite SmMnO3 thermistor film sensor arrays on an ultrathin (5 µm thick) and lightweight (21 mg) polyimide sheet for healthcare monitoring devices. The Ag nanowire and nanoparticle-impregnated carbon microcone array, which was prepared by precisely controlled surface laser carbonization of polyimide, showed sufficiently low resistance as a bottom electrode and good stability against sharp bending angles. The dot-shaped (diameter: 900 µm) perovskite thermistor film with a thickness of 900 nm was crystallized by pulsed ultraviolet laser irradiation of a precursor film printed with perovskite nanoparticle dispersion ink, and the film functioned well as the thermistor with a thermistor constant of 2820 K. The thermistor sensor sheet exhibited rapid responses to temperature variation and high stability in the temperature cycle tests over 1000 cycles between room temperature and 80 °C. The bending durability for a bending angle of 60° with a small bending radius (500 µm) was also high. During the bending test over 1000 cycles, the monitoring temperature variation was suppressed only within 0.1 °C. This ultrathin sensor array sheet can be mounted on surfaces with shape variations, and we used the sensor for real-time monitoring in healthcare to detect precise temperature variations on the human skin during physical exercise.

15.
Nat Mater ; 7(9): 735-40, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18677318

RESUMEN

White-light-emitting materials have attracted considerable attention because of their applications, such as large-surface emitting devices. Inorganic phosphor films are expected to be applied to these devices because of good chemical stability; however, a substantial reduction of fabrication temperature is required for future industrial uses such as lighting materials fabricated onto flexible organic substrates. Here we show the optical properties of white-light-emitting metavanadate phosphors, AVO3 (A: K, Rb and Cs), and we report a new direct fabrication process for RbVO3 films onto flexible polyethylene terephthalate (PET) substrates by means of a vacuum ultraviolet irradiation using an excimer lamp. In addition, the (Ca,Sr,Pr)TiO3/a-Al2O3/RbVO3/PET heterostructure prepared by an excimer-laser-assisted metal-organic deposition process has demonstrated the possibility of colour modification for RbVO3 films on PET. Our findings suggest new possibilities for further development of large-surface emitting lighting devices.

16.
ACS Omega ; 4(11): 14526-14536, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31528807

RESUMEN

The use of a 10-nm-thick buffer layer enabled tailoring of the characteristics, such as film deposition and structural and electrical properties, of magnetron-sputtered Al-doped ZnO (AZO) films containing unintentionally retained Ar atoms. The AZO films were deposited on glass substrates coated with the buffer layer via direct-current magnetron sputtering using Ar gas, a substrate temperature of 200 °C, and sintered AZO targets with an Al2O3 content of 2.0 wt %. The use of a Ga-doped ZnO film possessing a texture with a specific well-defined orientation as the buffer layer was very effective for improving the crystallographic orientation, reducing the residual stress, and improving the carrier transport of the AZO films. The residual compressive stress and in-grain carrier mobility were responsible for the retention of Ar atoms by the films, as observed using an electron probe microanalyzer.

17.
ACS Appl Mater Interfaces ; 7(38): 21398-407, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26356303

RESUMEN

It has been pointed out that agricultural crops and other natural plants may be damaged by outdoor lighting systems. Therefore, lighting that does not affect plant growth is needed. To address this problem, we have prepared a new whitlockite-like phosphate Dy-phosphor Ca8MgY1-x-yLaxDyy(PO4)7, which exhibits a yellow-white Dy(3+) luminescence that has a maximum internal quantum efficiency of 65.6% under a 387 nm excitation light for x = 0.10 and y = 0.05. The x dependence of IQE showed two maxima at x = 0.10-0.15 and 0.80-0.85, which could be due to the partial allowance of f-f forbidden transitions by local lattice distortion around the Dy(3+) ions originating from the La incorporation at near end members of Ca8MgY1-x-yLaxDyy(PO4)7. Concentration quenching occurred for x > 0.05. A white light-emitting diode (LED) was fabricated from a UV LED emitting at 385 nm and a Ca8MgY1-x-yLaxDyy(PO4)7 phosphor (Dy-WLED) for which the CIE color coordinates and correlated color temperature were CIE(0.350,0.378) and 4919 K, respectively. Plant cultivation experiments on Chlorella photosynthetic growth and blooming of the short-day plant Cosmos were carried out using the prepared Dy-WLED and reference commercial LEDs. We found that the Dy-WLED substantially reduced the photosynthesis of Chlorella and inhibited bloom impediment in Cosmos. These effects originated especially from the reduction of red-near-IR emissions. Thus, we conclude that the Dy-WLED is a very promising candidate for plant habitat-conscious white LEDs for outdoor lights that can protect both natural plant habitats and crop yields.


Asunto(s)
Asteraceae/efectos de la radiación , Chlorella/efectos de la radiación , Disprosio/química , Ecosistema , Luz , Fosfatos/química , Fotosíntesis/efectos de la radiación , Asteraceae/crecimiento & desarrollo , Chlorella/crecimiento & desarrollo , Luminiscencia , Espectrometría de Fluorescencia , Temperatura , Difracción de Rayos X
18.
J Opt Soc Am A Opt Image Sci Vis ; 25(7): 1574-85, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18594613

RESUMEN

There are two types of binocular cues available for perception of motion in depth. One is the binocular disparity change in time and the other is the velocity difference between the left and the right retinal images (inter-ocular velocity differences). We measured the luminance contrast threshold for seeing motion in depth while isolating either of the cues at various temporal modulations of velocity in the stimulus. To isolate disparity cues, dynamic random-dot stereograms were used (the disparity condition) while binocularly uncorrelated random-dot kinematograms were used to isolate velocity cues (the velocity condition). Results showed that sensitivity peaked at a temporal frequency (approximately 1 cps) in the velocity condition while the peak in the disparity condition was at the lowest frequency (0.35 cps) or at least at a frequency lower than that in the velocity condition. This suggests that the visual system has different temporal frequency properties for the velocity and disparity cues for motion in depth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA