Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 18(8): 899-910, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28604719

RESUMEN

Mammalian autophagy-related 8 (Atg8) homologs consist of LC3 proteins and GABARAPs, all of which are known to be involved in canonical autophagy. In contrast, the roles of Atg8 homologs in noncanonical autophagic processes are not fully understood. Here we show a unique role of GABARAPs, in particular gamma-aminobutyric acid (GABA)-A-receptor-associated protein-like 2 (Gabarapl2; also known as Gate-16), in interferon-γ (IFN-γ)-mediated antimicrobial responses. Cells that lacked GABARAPs but not LC3 proteins and mice that lacked Gate-16 alone were defective in the IFN-γ-induced clearance of vacuolar pathogens such as Toxoplasma. Gate-16 but not LC3b specifically associated with the small GTPase ADP-ribosylation factor 1 (Arf1) to mediate uniform distribution of interferon-inducible GTPases. The lack of GABARAPs reduced Arf1 activation, which led to formation of interferon-inducible GTPase-containing aggregates and hampered recruitment of interferon-inducible GTPases to vacuolar pathogens. Thus, GABARAPs are uniquely required for antimicrobial host defense through cytosolic distribution of interferon-inducible GTPases.


Asunto(s)
Factor 1 de Ribosilacion-ADP/inmunología , Autofagia/inmunología , Proteínas Portadoras/inmunología , Interferón gamma/inmunología , Proteínas Asociadas a Microtúbulos/inmunología , Toxoplasma/inmunología , Toxoplasmosis/inmunología , Factor 1 de Ribosilacion-ADP/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Familia de las Proteínas 8 Relacionadas con la Autofagia , Sistemas CRISPR-Cas , Proteínas Portadoras/metabolismo , Simulación por Computador , Proteínas del Citoesqueleto/inmunología , Proteínas del Citoesqueleto/metabolismo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , GTP Fosfohidrolasas/inmunología , GTP Fosfohidrolasas/metabolismo , Edición Génica , Immunoblotting , Inmunoprecipitación , Interferón gamma/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo
2.
Nature ; 616(7958): 814-821, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046086

RESUMEN

Physiological homeostasis becomes compromised during ageing, as a result of impairment of cellular processes, including transcription and RNA splicing1-4. However, the molecular mechanisms leading to the loss of transcriptional fidelity are so far elusive, as are ways of preventing it. Here we profiled and analysed genome-wide, ageing-related changes in transcriptional processes across different organisms: nematodes, fruitflies, mice, rats and humans. The average transcriptional elongation speed (RNA polymerase II speed) increased with age in all five species. Along with these changes in elongation speed, we observed changes in splicing, including a reduction of unspliced transcripts and the formation of more circular RNAs. Two lifespan-extending interventions, dietary restriction and lowered insulin-IGF signalling, both reversed most of these ageing-related changes. Genetic variants in RNA polymerase II that reduced its speed in worms5 and flies6 increased their lifespan. Similarly, reducing the speed of RNA polymerase II by overexpressing histone components, to counter age-associated changes in nucleosome positioning, also extended lifespan in flies and the division potential of human cells. Our findings uncover fundamental molecular mechanisms underlying animal ageing and lifespan-extending interventions, and point to possible preventive measures.


Asunto(s)
Envejecimiento , Longevidad , Elongación de la Transcripción Genética , Animales , Humanos , Ratones , Ratas , Envejecimiento/genética , Insulina/metabolismo , Longevidad/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transducción de Señal , Drosophila melanogaster/genética , Caenorhabditis elegans/genética , ARN Circular , Somatomedinas , Nucleosomas , Histonas , División Celular , Restricción Calórica
3.
EMBO J ; 42(1): e111389, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36444797

RESUMEN

The cellular activation of the NLRP3 inflammasome is spatiotemporally orchestrated by various organelles, but whether lysosomes contribute to this process remains unclear. Here, we show the vital role of the lysosomal membrane-tethered Ragulator complex in NLRP3 inflammasome activation. Deficiency of Lamtor1, an essential component of the Ragulator complex, abrogated NLRP3 inflammasome activation in murine macrophages and human monocytic cells. Myeloid-specific Lamtor1-deficient mice showed marked attenuation of NLRP3-associated inflammatory disease severity, including LPS-induced sepsis, alum-induced peritonitis, and monosodium urate (MSU)-induced arthritis. Mechanistically, Lamtor1 interacted with both NLRP3 and histone deacetylase 6 (HDAC6). HDAC6 enhances the interaction between Lamtor1 and NLRP3, resulting in NLRP3 inflammasome activation. DL-all-rac-α-tocopherol, a synthetic form of vitamin E, inhibited the Lamtor1-HDAC6 interaction, resulting in diminished NLRP3 inflammasome activation. Further, DL-all-rac-α-tocopherol alleviated acute gouty arthritis and MSU-induced peritonitis. These results provide novel insights into the role of lysosomes in the activation of NLRP3 inflammasomes by the Ragulator complex.


Asunto(s)
Inflamasomas , Peritonitis , Ratones , Humanos , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Inflamación , Histona Desacetilasa 6/genética , alfa-Tocoferol , Ácido Úrico , Peritonitis/inducido químicamente , Lisosomas , Ratones Endogámicos C57BL
4.
Mol Cell ; 73(2): 339-353.e6, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30581147

RESUMEN

Membrane targeting of the BECN1-containing class III PI 3-kinase (PI3KC3) complexes is pivotal to the regulation of autophagy. The interaction of PI3KC3 complex II and its ubiquitously expressed inhibitor, Rubicon, was mapped to the first ß sheet of the BECN1 BARA domain and the UVRAG BARA2 domain by hydrogen-deuterium exchange and cryo-EM. These data suggest that the BARA ß sheet 1 unfolds to directly engage the membrane. This mechanism was confirmed using protein engineering, giant unilamellar vesicle assays, and molecular simulations. Using this mechanism, a BECN1 ß sheet-1 derived peptide activates both PI3KC3 complexes I and II, while HIV-1 Nef inhibits complex II. These data reveal how BECN1 switches on and off PI3KC3 binding to membranes. The observations explain how PI3KC3 inhibition by Rubicon, activation by autophagy-inducing BECN1 peptides, and inhibition by HIV-1 Nef are mediated by the switchable ability of the BECN1 BARA domain to partially unfold and insert into membranes.


Asunto(s)
Autofagia , Beclina-1/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Proteínas Relacionadas con la Autofagia , Beclina-1/química , Beclina-1/genética , Sitios de Unión , Fosfatidilinositol 3-Quinasas Clase III/química , Fosfatidilinositol 3-Quinasas Clase III/genética , Microscopía por Crioelectrón , Activación Enzimática , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Simulación de Dinámica Molecular , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Relación Estructura-Actividad , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(1): e2312306120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38147546

RESUMEN

The neuron-to-neuron propagation of misfolded α-synuclein (αSyn) aggregates is thought to be key to the pathogenesis of synucleinopathies. Recent studies have shown that extracellular αSyn aggregates taken up by the endosomal-lysosomal system can rupture the lysosomal vesicular membrane; however, it remains unclear whether lysosomal rupture leads to the transmission of αSyn aggregation. Here, we applied cell-based αSyn propagation models to show that ruptured lysosomes are the pathway through which exogenous αSyn aggregates transmit aggregation, and furthermore, this process was prevented by lysophagy, i.e., selective autophagy of damaged lysosomes. αSyn aggregates accumulated predominantly in lysosomes, causing their rupture, and seeded the aggregation of endogenous αSyn, initially around damaged lysosomes. Exogenous αSyn aggregates induced the accumulation of LC3 on lysosomes. This LC3 accumulation was not observed in cells in which a key regulator of autophagy, RB1CC1/FIP200, was knocked out and was confirmed as lysophagy by transmission electron microscopy. Importantly, RB1CC1/FIP200-deficient cells treated with αSyn aggregates had increased numbers of ruptured lysosomes and enhanced propagation of αSyn aggregation. Furthermore, various types of lysosomal damage induced using lysosomotropic reagents, depletion of lysosomal enzymes, or more toxic species of αSyn fibrils also exacerbated the propagation of αSyn aggregation, and impaired lysophagy and lysosomal membrane damage synergistically enhanced propagation. These results indicate that lysophagy prevents exogenous αSyn aggregates from escaping the endosomal-lysosomal system and transmitting aggregation to endogenous cytosolic αSyn via ruptured lysosomal vesicles. Our findings suggest that the progression and severity of synucleinopathies are associated with damage to lysosomal membranes and impaired lysophagy.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Humanos , alfa-Sinucleína/metabolismo , Macroautofagia , Sinucleinopatías/metabolismo , Enfermedad de Parkinson/metabolismo , Lisosomas/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(2): e2306454120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38170752

RESUMEN

Mitochondrial and lysosomal functions are intimately linked and are critical for cellular homeostasis, as evidenced by the fact that cellular senescence, aging, and multiple prominent diseases are associated with concomitant dysfunction of both organelles. However, it is not well understood how the two important organelles are regulated. Transcription factor EB (TFEB) is the master regulator of lysosomal function and is also implicated in regulating mitochondrial function; however, the mechanism underlying the maintenance of both organelles remains to be fully elucidated. Here, by comprehensive transcriptome analysis and subsequent chromatin immunoprecipitation-qPCR, we identified hexokinase domain containing 1 (HKDC1), which is known to function in the glycolysis pathway as a direct TFEB target. Moreover, HKDC1 was upregulated in both mitochondrial and lysosomal stress in a TFEB-dependent manner, and its function was critical for the maintenance of both organelles under stress conditions. Mechanistically, the TFEB-HKDC1 axis was essential for PINK1 (PTEN-induced kinase 1)/Parkin-dependent mitophagy via its initial step, PINK1 stabilization. In addition, the functions of HKDC1 and voltage-dependent anion channels, with which HKDC1 interacts, were essential for the clearance of damaged lysosomes and maintaining mitochondria-lysosome contact. Interestingly, HKDC1 regulated mitophagy and lysosomal repair independently of its prospective function in glycolysis. Furthermore, loss function of HKDC1 accelerated DNA damage-induced cellular senescence with the accumulation of hyperfused mitochondria and damaged lysosomes. Our results show that HKDC1, a factor downstream of TFEB, maintains both mitochondrial and lysosomal homeostasis, which is critical to prevent cellular senescence.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Hexoquinasa , Hexoquinasa/genética , Hexoquinasa/metabolismo , Estudios Prospectivos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Mitocondrias/metabolismo , Lisosomas/metabolismo , Proteínas Quinasas/metabolismo , Senescencia Celular/genética , Homeostasis , Autofagia/genética
7.
Proc Natl Acad Sci U S A ; 120(39): e2221553120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37722055

RESUMEN

Accumulating evidence has demonstrated the presence of intertissue-communication regulating systemic aging, but the underlying molecular network has not been fully explored. We and others previously showed that two basic helix-loop-helix transcription factors, MML-1 and HLH-30, are required for lifespan extension in several longevity paradigms, including germlineless Caenorhabditis elegans. However, it is unknown what tissues these factors target to promote longevity. Here, using tissue-specific knockdown experiments, we found that MML-1 and its heterodimer partners MXL-2 and HLH-30 act primarily in neurons to extend longevity in germlineless animals. Interestingly, however, the downstream cascades of MML-1 in neurons were distinct from those of HLH-30. Neuronal RNA interference (RNAi)-based transcriptome analysis revealed that the glutamate transporter GLT-5 is a downstream target of MML-1 but not HLH-30. Furthermore, the MML-1-GTL-5 axis in neurons is critical to prevent an age-dependent collapse of proteostasis and increased oxidative stress through autophagy and peroxidase MLT-7, respectively, in long-lived animals. Collectively, our study revealed that systemic aging is regulated by a molecular network involving neuronal MML-1 function in both neural and peripheral tissues.


Asunto(s)
Envejecimiento , Neuronas , Animales , Envejecimiento/genética , Sistema de Transporte de Aminoácidos X-AG , Autofagia/genética , Caenorhabditis elegans/genética , Peroxidasas , Proteínas de Caenorhabditis elegans/genética
8.
EMBO Rep ; 24(12): e57300, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37987447

RESUMEN

Lysosomes are degradative organelles and signaling hubs that maintain cell and tissue homeostasis, and lysosomal dysfunction is implicated in aging and reduced longevity. Lysosomes are frequently damaged, but their repair mechanisms remain unclear. Here, we demonstrate that damaged lysosomal membranes are repaired by microautophagy (a process termed "microlysophagy") and identify key regulators of the first and last steps. We reveal the AGC kinase STK38 as a novel microlysophagy regulator. Through phosphorylation of the scaffold protein DOK1, STK38 is specifically required for the lysosomal recruitment of the AAA+ ATPase VPS4, which terminates microlysophagy by promoting the disassembly of ESCRT components. By contrast, microlysophagy initiation involves non-canonical lipidation of ATG8s, especially the GABARAP subfamily, which is required for ESCRT assembly through interaction with ALIX. Depletion of STK38 and GABARAPs accelerates DNA damage-induced cellular senescence in human cells and curtails lifespan in C. elegans, respectively. Thus, microlysophagy is regulated by STK38 and GABARAPs and could be essential for maintaining lysosomal integrity and preventing aging.


Asunto(s)
Caenorhabditis elegans , Microautofagia , Animales , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Lisosomas/metabolismo , Membranas Intracelulares/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
9.
PLoS Genet ; 18(6): e1010264, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35771772

RESUMEN

Autophagy is an indispensable process that degrades cytoplasmic materials to maintain cellular homeostasis. During autophagy, double-membrane autophagosomes surround cytoplasmic materials and either fuse with endosomes (called amphisomes) and then lysosomes, or directly fuse with lysosomes, in both cases generating autolysosomes that degrade their contents by lysosomal hydrolases. However, it remains unclear if there are specific mechanisms and/or conditions which distinguish these alternate routes. Here, we identified PACSIN1 as a novel autophagy regulator. PACSIN1 deletion markedly decreased autophagic activity under basal nutrient-rich conditions but not starvation conditions, and led to amphisome accumulation as demonstrated by electron microscopic and co-localization analysis, indicating inhibition of lysosome fusion. PACSIN1 interacted with SNAP29, an autophagic SNARE, and was required for proper assembly of the STX17 and YKT6 complexes. Moreover, PACSIN1 was required for lysophagy, aggrephagy but not mitophagy, suggesting cargo-specific fusion mechanisms. In C. elegans, deletion of sdpn-1, a homolog of PACSINs, inhibited basal autophagy and impaired clearance of aggregated protein, implying a conserved role of PACSIN1. Taken together, our results demonstrate the amphisome-lysosome fusion process is preferentially regulated in response to nutrient state and stress, and PACSIN1 is a key to specificity during autophagy.


Asunto(s)
Caenorhabditis elegans , Macroautofagia , Animales , Autofagosomas/metabolismo , Autofagia/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Lisosomas/metabolismo , Macroautofagia/genética , Proteínas SNARE/metabolismo
10.
PLoS Genet ; 17(8): e1009688, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34351902

RESUMEN

Autophagy degrades unnecessary proteins or damaged organelles to maintain cellular function. Therefore, autophagy has a preventive role against various diseases including hepatic disorders, neurodegenerative diseases, and cancer. Although autophagy in germ cells or Sertoli cells is known to be required for spermatogenesis and male fertility, it remains poorly understood how autophagy participates in spermatogenesis. We found that systemic knockout mice of Rubicon, a negative regulator of autophagy, exhibited a substantial reduction in testicular weight, spermatogenesis, and male fertility, associated with upregulation of autophagy. Rubicon-null mice also had lower levels of mRNAs of Sertoli cell-related genes in testis. Importantly, Rubicon knockout in Sertoli cells, but not in germ cells, caused a defect in spermatogenesis and germline stem cell maintenance in mice, indicating a critical role of Rubicon in Sertoli cells. In mechanistic terms, genetic loss of Rubicon promoted autophagic degradation of GATA4, a transcription factor that is essential for Sertoli cell function. Furthermore, androgen antagonists caused a significant decrease in the levels of Rubicon and GATA4 in testis, accompanied by elevated autophagy. Collectively, we propose that Rubicon promotes Sertoli cell function by preventing autophagic degradation of GATA4, and that this mechanism could be regulated by androgens.


Asunto(s)
Factor de Transcripción GATA4/metabolismo , Técnicas de Inactivación de Genes/métodos , Péptidos y Proteínas de Señalización Intracelular/genética , Células de Sertoli/fisiología , Animales , Autofagia , Línea Celular , Fertilidad , Humanos , Masculino , Ratones , Proteolisis , Células de Sertoli/citología , Análisis de la Célula Individual , Espermatogénesis , Testículo/crecimiento & desarrollo , Testículo/metabolismo
11.
J Cell Sci ; 134(6)2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33589500

RESUMEN

TFEB, a basic helix-loop-helix transcription factor, is a master regulator of autophagy, lysosome biogenesis and lipid catabolism. Compared to posttranslational regulation of TFEB, the regulation of TFEB mRNA stability remains relatively uncharacterized. In this study, we identified the mRNA-binding protein THOC4 as a novel regulator of TFEB. In mammalian cells, siRNA-mediated knockdown of THOC4 decreased the level of TFEB protein to a greater extent than other bHLH transcription factors. THOC4 bound to TFEB mRNA and stabilized it after transcription by maintaining poly(A) tail length. We further found that this mode of regulation was conserved in Caenorhabditiselegans and was essential for TFEB-mediated lipid breakdown, which becomes over-represented during prolonged starvation. Taken together, our findings reveal the presence of an additional layer of TFEB regulation by THOC4 and provide novel insights into the function of TFEB in mediating autophagy and lipid metabolism.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Lisosomas , Animales , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Homeostasis , Lisosomas/genética , ARN Mensajero/genética
12.
Kidney Int ; 101(1): 13-15, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34991802

RESUMEN

Acute kidney injury (AKI) increases the risk of chronic kidney disease (CKD), but the mechanisms of CKD development after AKI remain unclear. Recent studies have elucidated that autophagy protects against AKI, but the role of autophagy during the AKI-to-CKD transition is controversial. Beclin1 is a key molecule for autophagy as well as endocytosis and phagocytosis. Shi et al. demonstrate that Beclin1 activates autophagy and is a promising therapeutic target for AKI-to-CKD transition.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/terapia , Autofagia , Beclina-1 , Humanos , Insuficiencia Renal Crónica/complicaciones
13.
Biochem Soc Trans ; 50(1): 47-54, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35166325

RESUMEN

Autophagy is an evolutionally conserved cytoplasmic degradation pathway in which the double membrane structure, autophagosome sequesters cytoplasmic material and delivers them to lysosomes for degradation. Many autophagy related (ATG) proteins participate in the regulation of the several steps of autophagic process. Among ATGs, ubiquitin-like protein, ATG8 plays a pivotal role in autophagy. ATG8 is directly conjugated on lipid in autophagosome membrane upon induction of autophagy thus providing a good marker to monitor and analyze autophagy process. However, recent discoveries suggest that ATG8 has autophagy independent non-canonical functions and ATG8 positive structures are not always autophagosomes. This review briefly overviews canonical and non-canonical roles of ATG8 and introduce novel function of ATG8 to activate Transcriptional Factor EB(TFEB), a master transcription factor of autophagy and lysosome function during lysosomal damage.


Asunto(s)
Autofagosomas , Autofagia , Autofagosomas/metabolismo , Autofagia/fisiología , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Lisosomas/metabolismo , Factores de Transcripción/metabolismo
15.
Respir Res ; 22(1): 180, 2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140019

RESUMEN

BACKGROUND: Escalation to triple therapy (long-acting muscarinic antagonist/ß2-agonist, inhaled corticosteroid [ICS]) in chronic obstructive pulmonary disorder (COPD) is recommended for patients on LAMA/LABA combinations with frequent exacerbations and severe symptoms. An extended time-to-escalation to triple therapy suggests patients are in a stable condition and is an indicator of treatment effectiveness. No studies in Japanese clinical practice have compared the effectiveness of LAMA/LABA fixed-dose combination therapies with LAMA monotherapy in terms of time-to-escalation to triple therapy. The primary objective of this real-world study in Japan was to compare time-to-escalation to triple therapy among new users of tiotropium/olodaterol or tiotropium monotherapy for COPD without asthma. METHODS: In this active-comparator cohort study, new users of tiotropium/olodaterol (n = 1436) and tiotropium monotherapy (n = 5352) were identified from a large Japanese hospital-based database (Medical Data Vision Co., Ltd., Tokyo; prespecified study period: 1 April 2015 to 31 March 2019); patients in each group were matched 1:1 using high-dimensional propensity scores (hdPS). The primary outcome was time-to-escalation to triple therapy. RESULTS: For the prespecified study period in the hdPS-matched cohort, escalation to triple therapy was infrequent among new users of tiotropium/olodaterol (n = 1302, 7 escalation events) and tiotropium monotherapy (n = 1302, 8 escalation events). The difference in time-to-escalation to triple therapy between groups was not statistically significant (median [interquartile range]: 28 days [15.0-139.2] for tiotropium monotherapy vs 193 days [94.5-302.0] for tiotropium/olodaterol; hazard ratio: 0.89; 95% CI: 0.32-2.46). Similar findings (hazard ratio: 0.71; 95% Cl: 0.36-1.40) were observed in a post hoc analysis, which extended the study period by 1 year to 31 March 2020. Risks of first moderate and/or severe COPD exacerbation were lower for tiotropium/olodaterol than tiotropium monotherapy (between-group differences not significant). There were no significant between-group differences for the risks of all-cause inpatient mortality, major adverse cardiovascular events, and first use of home oxygen therapy. CONCLUSIONS: ICS monotherapy or ICS/LABA added to tiotropium or tiotropium/olodaterol is limited in Japanese clinical settings. The number of escalations to triple therapy was very limited in the dataset and there was insufficient power to detect differences between the treatment groups in the primary hdPS-matched cohort.


Asunto(s)
Benzoxazinas/administración & dosificación , Puntaje de Propensión , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Bromuro de Tiotropio/administración & dosificación , Administración por Inhalación , Anciano , Antagonistas Colinérgicos/administración & dosificación , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Femenino , Estudios de Seguimiento , Volumen Espiratorio Forzado , Humanos , Japón/epidemiología , Masculino , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Estudios Retrospectivos , Factores de Tiempo , Tiempo de Tratamiento , Resultado del Tratamiento
17.
J Oral Rehabil ; 47(9): 1178-1183, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32632924

RESUMEN

BACKGROUND: The efficacy of oral appliance (OA) varies greatly in patients with obstructive sleep apnoea (OSA). OBJECTIVE(S): The purpose of this cross-sectional study was to investigate the success rate of OA for OSA patients. METHODS: This study was based on a cross-sectional multicentre survey of OA therapy for the management of OSA called the JAMS (Japanese Cross-sectional Multicenter Survey) Study performed at 10 medical institutions. A total of 442 patients fulfilled the selection criteria, which patients had worn OA, and undergone overnight polysomnography to assess both the pre-treatment baseline and follow-up for OA. Age, sex, BMI and apnoea-hypopnea index (AHI) at the time of diagnosis and follow-up for OA were extracted. RESULTS: After OA treatment, the mean AHI decreased from 22.6 ± 13.8 to 10.0 ± 10.2/h, and the mean rate of decrease in the AHI was 52.5 ± 38.4%. Regarding the success rate to OA therapy, criterion 1 (AHI < 5/h), criterion 2 (AHI < 10/h), criterion 3 (AHI < 15/h) and criterion 4 (AHI reduction rate ≥ 50%) accounted for 33.5, 66.3, 80.5 and 63.3%, respectively. The success rate of OA treatment decreased according to the increase in OSA severity, obesity level (higher BMI) and older age. CONCLUSIONS: This study revealed the treatment success rate of OA on multiple criteria according to OSA severity, BMI and age. It may support for the clinician to make a decision on the OSA management.


Asunto(s)
Apnea Obstructiva del Sueño , Anciano , Índice de Masa Corporal , Estudios Transversales , Humanos , Polisomnografía , Resultado del Tratamiento
18.
Int J Mol Sci ; 21(16)2020 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-32784909

RESUMEN

Autophagy is a membrane traffic system that provides sustainable degradation of cellular components for homeostasis, and is thus considered to promote health and longevity, though its activity declines with aging. The present findings show deterioration of autophagy in association with premature skin aging. Autophagy flux was successfully determined in skin tissues, which demonstrated significantly decreased autophagy in hyperpigmented skin such as that seen in senile lentigo. Furthermore, an exacerbated decline in autophagy was confirmed in xerotic hyperpigmentation areas, accompanied by severe dehydration and a barrier defect, which showed correlations with skin physiological conditions. The enhancement of autophagy in skin ex vivo ameliorated skin integrity, including pigmentation and epidermal differentiation. The present results indicate that the restoration of autophagy can contribute to improving premature skin aging by various intrinsic and extrinsic factors via the normalization of protein homeostasis.


Asunto(s)
Autofagia/fisiología , Diferenciación Celular/fisiología , Epidermis/fisiología , Envejecimiento de la Piel/fisiología , Pigmentación de la Piel/fisiología , Piel/fisiopatología , Adulto , Envejecimiento Prematuro/metabolismo , Envejecimiento Prematuro/fisiopatología , Autofagia/genética , Diferenciación Celular/genética , Línea Celular , Epidermis/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Queratinocitos/citología , Queratinocitos/fisiología , Lentigo/genética , Lentigo/metabolismo , Lentigo/fisiopatología , Masculino , Persona de Mediana Edad , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Piel/metabolismo , Envejecimiento de la Piel/genética , Pigmentación de la Piel/genética
19.
J Cell Sci ; 130(7): 1209-1216, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28302910

RESUMEN

Macroautophagy (autophagy) is a highly conserved intracellular degradation system that is essential for homeostasis in eukaryotic cells. Due to the wide variety of the cytoplasmic targets of autophagy, its dysregulation is associated with many diseases in humans, such as neurodegenerative diseases, heart disease and cancer. During autophagy, cytoplasmic materials are sequestered by the autophagosome - a double-membraned structure - and transported to the lysosome for digestion. The specific stages of autophagy are induction, formation of the isolation membrane (phagophore), formation and maturation of the autophagosome and, finally, fusion with a late endosome or lysosome. Although there are significant insights into each of these steps, the mechanisms of autophagosome-lysosome fusion are least understood, although there have been several recent advances. In this Commentary, we will summarize the current knowledge regarding autophagosome-lysosome fusion, focusing on mammals, and discuss the remaining questions and future directions of the field.


Asunto(s)
Autofagosomas/metabolismo , Lisosomas/metabolismo , Fusión de Membrana , Animales , Humanos , Fosfatidilinositoles/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Unión al GTP rab/metabolismo
20.
Development ; 141(17): 3363-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25078651

RESUMEN

In vertebrates that have been examined to date, the sexual identity of germ cells is determined by the sex of gonadal somatic cells. In the teleost fish medaka, a sex-determination gene on the Y chromosome, DMY/dmrt1bY, is expressed in gonadal somatic cells and regulates the sexual identity of germ cells. Here, we report a novel mechanism by which sex chromosomes cell-autonomously confer sexually different characters upon germ cells prior to gonad formation in a genetically sex-determined species. We have identified a novel gene, Sdgc (sex chromosome-dependent differential expression in germ cells), whose transcripts are highly enriched in early XY germ cells. Chimeric analysis revealed that sexually different expression of Sdgc is controlled in a germ cell-autonomous manner by the number of Y chromosomes. Unexpectedly, DMY/dmrt1bY was expressed in germ cells prior to gonad formation, but knockdown and overexpression of DMY/dmrt1bY did not affect Sdgc expression. We also found that XX and XY germ cells isolated before the onset of DMY/dmrt1bY expression in gonadal somatic cells behaved differently in vitro and were affected by Sdgc. Sdgc maps close to the sex-determination locus, and recombination around the two loci appears to be repressed. Our results provide important insights into the acquisition and plasticity of sexual differences at the cellular level even prior to the developmental stage of sex determination.


Asunto(s)
Proteínas de Peces/genética , Células Germinativas/metabolismo , Gónadas/crecimiento & desarrollo , Organogénesis , Oryzias/crecimiento & desarrollo , Oryzias/genética , Cromosomas Sexuales/genética , Animales , Recuento de Células , Separación Celular , Células Cultivadas , Mapeo Cromosómico , Femenino , Proteínas de Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ligamiento Genético , Sitios Genéticos/genética , Células Germinativas/citología , Gónadas/citología , Gónadas/metabolismo , Masculino , Mitosis/genética , Especificidad de Órganos/genética , Organogénesis/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba/genética , Cromosoma Y/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA