Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 19(5): e1011369, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37146077

RESUMEN

The trematode parasite Schistosoma mansoni causes schistosomiasis, which affects over 200 million people worldwide. Schistosomes are dioecious, with egg laying depending on the females' obligatory pairing with males. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein-coding potential that have been involved in other species with reproduction, stem cell maintenance, and drug resistance. In S. mansoni, we recently showed that the knockdown of one lncRNA affects the pairing status of these parasites. Here, we re-analyzed public RNA-Seq data from paired and unpaired adult male and female worms and their gonads, obtained from mixed-sex or single-sex cercariae infections, and found thousands of differentially expressed pairing-dependent lncRNAs among the 23 biological samples that were compared. The expression levels of selected lncRNAs were validated by RT-qPCR using an in vitro unpairing model. In addition, the in vitro silencing of three selected lncRNAs showed that knockdown of these pairing-dependent lncRNAs reduced cell proliferation in adult worms and their gonads, and are essential for female vitellaria maintenance, reproduction, and/or egg development. Remarkably, in vivo silencing of each of the three selected lncRNAs significantly reduced worm burden in infected mice by 26 to 35%. Whole mount in situ hybridization experiments showed that these pairing-dependent lncRNAs are expressed in reproductive tissues. These results show that lncRNAs are key components intervening in S. mansoni adult worm homeostasis, which affects pairing status and survival in the mammalian host, thus presenting great potential as new therapeutic target candidates.


Asunto(s)
Parásitos , ARN Largo no Codificante , Esquistosomiasis mansoni , Masculino , Femenino , Animales , Ratones , Schistosoma mansoni/genética , ARN Largo no Codificante/genética , Fertilidad/genética , Reproducción , Parásitos/genética , Esquistosomiasis mansoni/parasitología , Mamíferos
2.
Mar Drugs ; 20(2)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35200640

RESUMEN

Schistosomiasis has been controlled for more than 40 years with a single drug, praziquantel, and only one molluscicide, niclosamide, raising concern of the possibility of the emergence of resistant strains. However, the molecular targets for both agents are thus far unknown. Consequently, the search for lead compounds from natural sources has been encouraged due to their diverse structure and function. Our search for natural compounds with potential use in schistosomiasis control led to the identification of an algal species, Laurencia dendroidea, whose extracts demonstrated significant activity toward both Schistosoma mansoni parasites and their intermediate host snails Biomphalaria glabrata. In the present study, three seaweed-derived halogenated sesquiterpenes, (-)-elatol, rogiolol, and obtusol are proposed as potential lead compounds for the development of anthelminthic drugs for the treatment of and pesticides for the environmental control of schistosomiasis. The three compounds were screened for their antischistosomal and molluscicidal activities. The screening revealed that rogiolol exhibits significant activity toward the survival of adult worms, and that all three compounds showed activity against S. mansoni cercariae and B. glabrata embryos. Biomonitored fractioning of L. dendroidea extracts indicated elatol as the most active compound toward cercariae larvae and snail embryos.


Asunto(s)
Antihelmínticos , Laurencia , Moluscocidas , Sesquiterpenos , Animales , Antihelmínticos/aislamiento & purificación , Antihelmínticos/farmacología , Larva , Laurencia/química , Moluscocidas/aislamiento & purificación , Moluscocidas/farmacología , Schistosoma mansoni/efectos de los fármacos , Esquistosomiasis/tratamiento farmacológico , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología , Compuestos de Espiro/aislamiento & purificación , Compuestos de Espiro/farmacología
3.
Mar Drugs ; 19(5)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922065

RESUMEN

Schistosomiasis is a parasitic disease that affects more than 250 million people. The treatment is limited to praziquantel and the control of the intermediate host with the highly toxic molluscicidal niclosamide. Marine algae are a poorly explored and promising alternative that can provide lead compounds, and the use of multivariate analysis could contribute to quicker discovery. As part of our search for new natural compounds with which to control schistosomiasis, we screened 45 crude extracts obtained from 37 Brazilian seaweed species for their molluscicidal activity against Biomphalaria glabrata embryos and schistosomicidal activities against Schistosoma mansoni. Two sets of extracts were taxonomically grouped for metabolomic analysis. The extracts were analyzed by GC-MS, and the data were subjected to Pattern Hunter and Pearson correlation tests. Overall, 22 species (60%) showed activity in at least one of the two models. Multivariate analysis pointed towards 3 hits against B. glabrata veliger embryos in the Laurencia/Laurenciella set, 5 hits against B. glabrata blastula embryos, and 31 against S. mansoni in the Ochrophyta set. Preliminary annotations suggested some compounds such as triquinane alcohols, prenylated guaianes, dichotomanes, and xenianes. Despite the putative identification, this work presents potential candidates and can guide future isolation and identification.


Asunto(s)
Biomphalaria/efectos de los fármacos , Bioprospección , Descubrimiento de Drogas , Moluscocidas/farmacología , Schistosoma mansoni/efectos de los fármacos , Esquistosomiasis mansoni/prevención & control , Esquistosomicidas/farmacología , Algas Marinas/metabolismo , Animales , Biomphalaria/parasitología , Brasil , Metaboloma , Metabolómica , Moluscocidas/aislamiento & purificación , Schistosoma mansoni/crecimiento & desarrollo , Esquistosomiasis mansoni/parasitología , Esquistosomicidas/aislamiento & purificación
4.
Ecotoxicol Environ Saf ; 140: 18-23, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28231501

RESUMEN

In this study, the effects of the heavy metal cadmium on the stress protein HSP70 are investigated in freshwater mollusks Biomphalaria glabrata. Adult snails were exposed for 96h to CdCl2 at concentrations ranging from 0.09 to 0.7mgL-1 (LC50/96h=0.34 (0.30-0.37). Time and concentration-dependent increases in the expression of HSP70 were observed at sub-lethal levels in the immunoblotting assay. Further, an increased survival to a lethal heat shock was observed in animals pre-exposed to a nonlethal concentration of cadmium, evidencing the induction of acquired tolerance. The present study demonstrated the inducibility of B. glabrata HSP70 by cadmium, a relevant environmental contaminant, at non-lethal levels, providing evidences that the assessment of HSP70 in B. glabrata can be regarded as a suitable biomarker for ecotoxicological studies.


Asunto(s)
Biomphalaria/efectos de los fármacos , Cadmio/toxicidad , Monitoreo del Ambiente/métodos , Proteínas HSP70 de Choque Térmico/biosíntesis , Respuesta al Choque Térmico , Contaminantes Químicos del Agua/toxicidad , Animales , Biomphalaria/metabolismo , Cadmio/metabolismo , Relación Dosis-Respuesta a Droga , Tolerancia a Medicamentos , Ecotoxicología , Agua Dulce/química , Proteínas HSP70 de Choque Térmico/metabolismo , Calor , Estrés Oxidativo/efectos de los fármacos , Reproducción/efectos de los fármacos , Contaminantes Químicos del Agua/metabolismo
5.
Ecotoxicol Environ Saf ; 110: 208-15, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25259848

RESUMEN

A protocol combining acute toxicity, developmental toxicity and mutagenicity analysis in freshwater snail Biomphalaria glabrata for application in ecotoxicological studies is described. For acute toxicity testing, LC50 and EC50 values were determined; dominant lethal mutations induction was the endpoint for mutagenicity analysis. Reference toxicant potassium dichromate (K2Cr2O7) was used to characterize B. glabrata sensitivity for toxicity and cyclophosphamide to mutagenicity testing purposes. Compared to other relevant freshwater species, B. glabrata showed high sensitivity: the lowest EC50 value was obtained with embryos at veliger stage (5.76mg/L). To assess the model applicability for environmental studies, influent and effluent water samples from a wastewater treatment plant were evaluated. Gastropod sensitivity was assessed in comparison to the standardized bioassay with Daphnia similis exposed to the same water samples. Sampling sites identified as toxic to daphnids were also detected by snails, showing a qualitatively similar sensitivity suggesting that B. glabrata is a suitable test species for freshwater monitoring. Holding procedures and protocols implemented for toxicity and developmental bioassays showed to be in compliance with international standards for intra-laboratory precision. Thereby, we are proposing this system for application in ecotoxicological studies.


Asunto(s)
Biomphalaria/efectos de los fármacos , Cromo/toxicidad , Desarrollo Embrionario/efectos de los fármacos , Agua Dulce , Mutágenos/toxicidad , Animales , Bioensayo/métodos , Biomphalaria/embriología , Biomphalaria/crecimiento & desarrollo , Daphnia/genética , Ecotoxicología/métodos , Embrión no Mamífero , Pruebas de Mutagenicidad/métodos , Dicromato de Potasio/toxicidad
6.
Molecules ; 19(4): 5205-18, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24762961

RESUMEN

The search of alternative compounds to control tropical diseases such as schistosomiasis has pointed to secondary metabolites derived from natural sources. Piper species are candidates in strategies to control the transmission of schistosomiasis due to their production of molluscicidal compounds. A new benzoic acid derivative and three flavokawains from Piper diospyrifolium, P. cumanense and P. gaudichaudianum displayed significant activities against Biomphalaria glabrata snails. Additionally, "in silico" studies were performed using docking assays and Molecular Interaction Fields to evaluate the physical-chemical differences among the compounds in order to characterize the observed activities of the test compounds against Biomphalaria glabrata snails.


Asunto(s)
Antiparasitarios/química , Ácido Benzoico/química , Chalconas/química , Estadios del Ciclo de Vida/efectos de los fármacos , Piper/química , Extractos Vegetales/química , Caracoles/efectos de los fármacos , Animales , Antiparasitarios/aislamiento & purificación , Antiparasitarios/farmacología , Productos Biológicos/química , Chalconas/aislamiento & purificación , Chalconas/farmacología , Reservorios de Enfermedades , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Hojas de la Planta/química , Schistosoma mansoni/fisiología , Esquistosomiasis/prevención & control , Esquistosomiasis/transmisión , Caracoles/crecimiento & desarrollo , Relación Estructura-Actividad
7.
Planta Med ; 79(3-4): 253-8, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23408270

RESUMEN

Blood fluke of the genus Schistosoma are the etiological agents of human schistosomiasis, an important neglected tropical disease that afflicts over 200 million people worldwide. The treatment for this disease relies heavily on a single drug, praziquantel. Recent reports of praziquantel resistance raise concerns about future control of the disease and show the importance of developing new antischistosomal drugs. Currently, natural products have been a good source for drug development. (+)-Limonene epoxide is a mixture of cis and trans isomers found in many plants. Here, we report the in vitro effect of this natural compound on the survival time of Schistosoma mansoni adult worms. In addition, we examined alterations on the tegumental surface of adult schistosomes by means of confocal laser scanning microscopy. The effects of (+)-limonene epoxide at 25 µg/mL on S. mansoni adult worms were similar to those of the positive control (praziquantel), with reduction in motility and death of all worms after 120 h. Confocal laser scanning microscopy revealed that (+)-limonene epoxide-mediated worm killing was associated with tegumental destruction. Our results, along with the low toxicity of the (+)-limonene epoxide, suggest that this natural compound might be promising for the development of new schistosomicidal agents.


Asunto(s)
Antihelmínticos/farmacología , Ciclohexenos/farmacología , Compuestos Epoxi/farmacología , Monoterpenos/farmacología , Schistosoma mansoni/efectos de los fármacos , Terpenos/farmacología , Animales , Cricetinae , Monoterpenos Ciclohexánicos , Ciclohexenos/química , Relación Dosis-Respuesta a Droga , Femenino , Limoneno , Masculino , Microscopía Confocal , Monoterpenos/química , Praziquantel/farmacología , Schistosoma mansoni/fisiología , Esquistosomicidas/farmacología , Terpenos/química
8.
Parasitol Res ; 112(2): 603-10, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23086444

RESUMEN

Blood flukes of the genus Schistosoma are the causative agents of human schistosomiasis, a debilitating disease that afflicts over 200 million people worldwide. Praziquantel is the drug of choice but concerns over praziquantel resistance have renewed interest in the search for alternative drug therapies. Carvacrol, a naturally occurring monoterpene phenol and food additive, has been shown high medicinal importance, including antimicrobials activities. The aim of this study was to evaluate in vitro effect of carvacryl acetate, a derivative of carvacrol, on Schistosoma mansoni adult worms. We demonstrated that carvacryl acetate at 6.25 µg/mL has antischistosomal activity, affecting parasite motility and viability. Additionally, confocal laser scanning microscopy pictures revealed morphological alterations on the tegumental surface of worms, where some tubercles appeared to be swollen with numerous small blebs emerging from the tegument around the tubercles. Furthermore, experiments performed using carvacryl acetate at sub-lethal concentrations (ranging from 1.562 to 6.25 µg/mL) showed an inhibitory effect on the daily egg output of paired adult worms. Thus, carvacryl acetate is toxic at high doses, while at sub-lethal doses, it significantly interferes with the reproductive fitness of S. mansoni adult worms. Due to its safety and wide use in the industry, carvacryl acetate is a promising natural product-derived compound and it may represent a step forward in the search for novel anthelmintic agents, at a time when there is an urgent need for novel drugs.


Asunto(s)
Acetatos/farmacología , Antihelmínticos/farmacología , Monoterpenos/farmacología , Schistosoma mansoni/efectos de los fármacos , Animales , Cimenos , Locomoción/efectos de los fármacos , Microscopía , Reproducción/efectos de los fármacos , Schistosoma mansoni/anatomía & histología , Análisis de Supervivencia
9.
Exp Parasitol ; 132(2): 222-7, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22796749

RESUMEN

Schistosomiasis is one of the most important parasitic infections in humans that occur in many tropical and subtropical countries. Currently, the control of schistosomiasis rests with a single drug, praziquantel, which is effective against adult worms but not the larval stages. Recent studies have shown that piplartine, an amide isolated from plants of the genus Piper (Piperaceae), reveals interesting antischistosomal properties against Schistosoma mansoni adult worms. Here, we report the in vitro antischistosomal activity of piplartine on S. mansoni schistosomula of different ages (3 h old and 1, 3, 5, and 7 days old), and examine alterations on the tegumental surface of worms by means of confocal laser scanning microscopy. Piplartine at a concentration of 7.5 µM caused the death of all schistosomula within 120 h. The lethal effect occurred in a dose-dependent manner and was also dependent on the age of the parasite. Microscopy observation revealed extensive tegumental destruction, including blebbing, granularity, and a shorter body length. This report provides the first evidence that piplartine is able to kill schistosomula of different ages and reinforce that piplartine is a promising compound that could be used for the development of new schistosomicidal agent.


Asunto(s)
Piperidonas/farmacología , Schistosoma mansoni/efectos de los fármacos , Esquistosomicidas/farmacología , Animales , Biomphalaria , Cricetinae , Larva/efectos de los fármacos , Mesocricetus , Microscopía Confocal , Piper/química , Extractos Vegetales/farmacología , Praziquantel/farmacología , Schistosoma mansoni/ultraestructura , Factores de Tiempo
10.
Exp Parasitol ; 127(2): 357-64, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20832410

RESUMEN

Schistosomiasis is one of the world's greatly neglected tropical diseases, and its control is largely dependent on a single drug, praziquantel. Here, we report the in vitro effect of piplartine, an amide isolated from Piper tuberculatum (Piperaceae), on Schistosoma mansoni adult worms. A piplartine concentration of 15.8 µM reduced the motor activity of worms and caused their death within 24h in a RPMI 1640 medium. Similarly, the highest sub-lethal concentration of piplartine (6.3 µM) caused a 75% reduction in egg production in spite of coupling. Additionally, piplartine induced morphological changes on the tegument, and a quantitative analysis carried out by confocal microscopy revealed an extensive tegumental destruction and damage in the tubercles. This damage was dose-dependent in the range of 15.8-630.2 µM. At doses higher than 157.6 µM, piplartine induced morphological changes in the oral and ventral sucker regions of the worms. It is the first time that the schistosomicidal activity has been reported for piplartine.


Asunto(s)
Piperidonas/farmacología , Extractos Vegetales/farmacología , Schistosoma mansoni/efectos de los fármacos , Animales , Biomphalaria , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Cricetinae , Femenino , Masculino , Mesocricetus , Microscopía Confocal , Piper/química , Piperidonas/aislamiento & purificación , Piperidonas/toxicidad , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad , Células Vero
11.
Chem Biodivers ; 8(3): 548-58, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21404438

RESUMEN

Schistosomiasis is a neglected tropical disease that remains a considerable public health problem worldwide. Since the mainstay of schistosomiasis control is chemotherapy with a single drug, praziquantel, drug resistance is a concern. Here, we examined the in vitro effects of dermaseptin 01 (DS 01), an antimicrobial peptide found in the skin secretion of frogs of the genus Phyllomedusa, on Schistosoma mansoni adult worms. DS 01 at a concentration of 100 µg/ml reduced the worm motor activity and caused the death of all worms within 48 h in RPMI 1640 medium. At the highest sublethal concentration of antimicrobial peptide (75 µg/ml), a 100% reduction in egg output of paired female worms was observed. Additionally, DS 01 induced morphological alterations on the tegument of S. mansoni, and a quantitative analysis carried out by confocal microscopy revealed extensive destruction of the tubercles in a dose-dependent manner over the concentration range of 50-200 µg/ml. It was the first time that an anthelmintic activity towards schistosomes has been reported for a dermaseptin.


Asunto(s)
Proteínas Anfibias/farmacología , Antihelmínticos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Schistosoma mansoni/efectos de los fármacos , Proteínas Anfibias/química , Proteínas Anfibias/aislamiento & purificación , Animales , Antihelmínticos/química , Antihelmínticos/aislamiento & purificación , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Anuros , Relación Dosis-Respuesta a Droga , Femenino , Óvulo/efectos de los fármacos , Schistosoma mansoni/fisiología , Piel/química , Especificidad de la Especie
12.
Environ Sci Pollut Res Int ; 28(44): 63202-63214, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34224093

RESUMEN

Textile dyeing consumes high volumes of water, generating proportional number of colored effluents which contain several hazardous chemical. These contaminants can implicate in significant changes in aquatic environmental, including several adverse effects to organisms in different trophic levels. The present study was developed to assess the ecotoxicological effects of textile effluent samples and reactive Red 239 dye (used in cotton dyeing) to aquatic organisms Vibrio fischeri bacteria, Daphnia similis crustacean, and Biomphalaria glabrata snail (adults and embryos). Chronic assays with lethal and sublethal effects for Daphnia similis were included and performed only for textile effluents samples. The mutagenicity was also evaluated with Salmonella/microsome assay (TA98, TA100, and YG1041 strains). V. fischeri bacteria was the most sensitive to reactive Red 239 dye (EC50 = 10.14 mg L-1) followed by mollusk embryos at all stages (EC50 = 116.41 to 124.14 mg L-1), D. similis (EC50= 389.42 mg L-1), and less sensitive to adult snails (LC50= 517.19 mg L-1). The textile effluent was toxic for all exposed organisms [E(L)C50 < 15%] and B. glabrata embryos showed different responses in the early stages of blastulae and gastrulae (EC50 = 7.60 and 7.08%) compared to advanced development stages trochophore and veliger (EC50 = 21.56 and 29.32%). Developmental and sublethal effects in B. glabrata embryos and D. similis were evidenced. In the chronic assay with effluent, the EC10/NOEC = 3% was obtained. Mutagenic effects were not detected for dye aqueous solutions neither for effluents samples. These data confirmed the importance of evaluating the effects in aquatic organisms from different trophic levels and reinforce the need for environmental aquatic protection.


Asunto(s)
Organismos Acuáticos , Contaminantes Químicos del Agua , Animales , Colorantes/toxicidad , Daphnia , Textiles , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
13.
Sci Rep ; 11(1): 16816, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34413342

RESUMEN

Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) is the most used, fast, and reproducible method to confirm large-scale gene expression data. The use of stable reference genes for the normalization of RT-qPCR assays is recognized worldwide. No systematic study for selecting appropriate reference genes for usage in RT-qPCR experiments comparing gene expression levels at different Schistosoma mansoni life-cycle stages has been performed. Most studies rely on genes commonly used in other organisms, such as actin, tubulin, and GAPDH. Therefore, the present study focused on identifying reference genes suitable for RT-qPCR assays across six S. mansoni developmental stages. The expression levels of 25 novel candidates that we selected based on the analysis of public RNA-Seq datasets, along with eight commonly used reference genes, were systematically tested by RT-qPCR across six developmental stages of S. mansoni (eggs, miracidia, cercariae, schistosomula, adult males and adult females). The stability of genes was evaluated with geNorm, NormFinder and RefFinder algorithms. The least stable candidate reference genes tested were actin, tubulin and GAPDH. The two most stable reference genes suitable for RT-qPCR normalization were Smp_101310 (Histone H4 transcription factor) and Smp_196510 (Ubiquitin recognition factor in ER-associated degradation protein 1). Performance of these two genes as normalizers was successfully evaluated with females maintained unpaired or paired to males in culture for 8 days, or with worm pairs exposed for 16 days to double-stranded RNAs to silence a protein-coding gene. This study provides reliable reference genes for RT-qPCR analysis using samples from six different S. mansoni life-cycle stages.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Schistosoma mansoni/genética , Animales , Femenino , Perfilación de la Expresión Génica , Silenciador del Gen , Estadios del Ciclo de Vida/genética , Masculino , Sistemas de Lectura Abierta/genética , Estándares de Referencia , Transcriptoma/genética
14.
Front Immunol ; 12: 624191, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777004

RESUMEN

In spite of several decades of research, an effective vaccine against schistosomiasis remains elusive. The radiation-attenuated (RA) cercarial vaccine is still the best model eliciting high protection levels, although the immune mechanisms have not yet been fully characterized. In order to identify genes and pathways underlying protection we investigated patterns of gene expression in PBMC and skin draining Lymph Nodes (LN) from mice using two exposure comparisons: vaccination with 500 attenuated cercariae versus infection with 500 normal cercariae; one versus three doses. Vaccinated mice were challenged with 120 normal parasites. Integration of PBMC and LN data from the infected group revealed early up-regulation of pathways associated with Th2 skewing and polarization of IgG antibody profiles. Additionally, hemostasis pathways were downregulated in infected mice, correlating with platelet reduction, potentially a mechanism to assist parasite migration through capillary beds. Conversely, up regulation of such mechanisms after vaccination may explain parasite blockade in the lungs. In contrast, a single exposure to attenuated parasites revealed early establishment of a Th1 bias (signaling of IL-1, IFN-γ; and Leishmania infection). Genes encoding chemokines and their receptors were more prominent in vaccinated mice, indicating an enhanced capacity for inflammation, potentially augmenting the inhibition of intravascular migration. Increasing the vaccinations from one to three did not dramatically elevate protection, but there was a clear shift towards antibody-mediated effectors. However, elements of the Th1 bias were still evident. Notable features after three vaccinations were markers of cytotoxicity (including IL-6 and NK cells) together with growth factors and their receptors (FGFR/VEGF/EGF) and the apoptosis pathway. Indeed, there is evidence for the development of anergy after three vaccinations, borne out by the limited responses detected in samples after challenge. We infer that persistence of a Th1 response puts a limit on expression of antibody-mediated mechanisms. This feature may explain the failure of multiple doses to drive protection towards sterile immunity. We suggest that the secretions of lung stage parasites would make a novel cohort of antigens for testing in protection experiments.


Asunto(s)
Hemostasis , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Vacunas Antiprotozoos/administración & dosificación , Schistosoma mansoni/inmunología , Esquistosomiasis mansoni/prevención & control , Biología de Sistemas , Animales , Cercarias/inmunología , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Hemostasis/genética , Interacciones Huésped-Parásitos , Péptidos y Proteínas de Señalización Intercelular/genética , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/parasitología , Ratones Endogámicos C57BL , Análisis por Micromatrices , Vacunas Antiprotozoos/inmunología , Schistosoma mansoni/patogenicidad , Esquistosomiasis mansoni/inmunología , Esquistosomiasis mansoni/metabolismo , Esquistosomiasis mansoni/parasitología , Células TH1/inmunología , Células TH1/metabolismo , Células TH1/parasitología , Balance Th1 - Th2 , Células Th2/inmunología , Células Th2/metabolismo , Células Th2/parasitología , Factores de Tiempo , Transcriptoma , Vacunación , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología
15.
Nat Commun ; 12(1): 6181, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702841

RESUMEN

The rhesus macaque provides a unique model of acquired immunity against schistosomes, which afflict >200 million people worldwide. By monitoring bloodstream levels of parasite-gut-derived antigen, we show that from week 10 onwards an established infection with Schistosoma mansoni is cleared in an exponential manner, eliciting resistance to reinfection. Secondary challenge at week 42 demonstrates that protection is strong in all animals and complete in some. Antibody profiles suggest that antigens mediating protection are the released products of developing schistosomula. In culture they are killed by addition of rhesus plasma, collected from week 8 post-infection onwards, and even more efficiently with post-challenge plasma. Furthermore, cultured schistosomula lose chromatin activating marks at the transcription start site of genes related to worm development and show decreased expression of genes related to lysosomes and lytic vacuoles involved with autophagy. Overall, our results indicate that enhanced antibody responses against the challenge migrating larvae mediate the naturally acquired protective immunity and will inform the route to an effective vaccine.


Asunto(s)
Schistosoma mansoni/fisiología , Esquistosomiasis mansoni/inmunología , Animales , Anticuerpos Antihelmínticos/inmunología , Anticuerpos Antihelmínticos/farmacología , Antígenos Helmínticos/inmunología , Modelos Animales de Enfermedad , Epigénesis Genética/efectos de los fármacos , Femenino , Genes de Helminto/genética , Granulocitos/inmunología , Histonas/metabolismo , Interacciones Huésped-Parásitos/inmunología , Larva/efectos de los fármacos , Larva/genética , Larva/crecimiento & desarrollo , Linfocitos/inmunología , Macaca mulatta/inmunología , Macaca mulatta/parasitología , Masculino , Recuento de Huevos de Parásitos , Reinfección/inmunología , Esquistosomiasis mansoni/parasitología
16.
Sci Rep ; 10(1): 21565, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33299037

RESUMEN

Schistosoma mansoni is a flatworm that causes schistosomiasis, a neglected tropical disease that affects more than 200 million people worldwide. There is only one drug indicated for treatment, praziquantel, which may lead to parasite resistance emergence. The ribonucleoside analogue 5-azacytidine (5-AzaC) is an epigenetic drug that inhibits S. mansoni oviposition and ovarian development through interference with parasite transcription, translation and stem cell activities. Therefore, studying the downstream pathways affected by 5-AzaC in S. mansoni may contribute to the discovery of new drug targets. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein coding potential that have been involved in reproduction, stem cell maintenance and drug resistance. We have recently published a catalog of lncRNAs expressed in S. mansoni life-cycle stages, tissues and single cells. However, it remains largely unknown if lncRNAs are responsive to epigenetic drugs in parasites. Here, we show by RNA-Seq re-analyses that hundreds of lncRNAs are differentially expressed after in vitro 5-AzaC treatment of S. mansoni females, including intergenic, antisense and sense lncRNAs. Many of these lncRNAs belong to co-expression network modules related to male metabolism and are also differentially expressed in unpaired compared with paired females and ovaries. Half of these lncRNAs possess histone marks at their genomic loci, indicating regulation by histone modification. Among a selected set of 8 lncRNAs, half of them were validated by RT-qPCR as differentially expressed in females, and some of them also in males. Interestingly, these lncRNAs are also expressed in other life-cycle stages. This study demonstrates that many lncRNAs potentially involved with S. mansoni reproductive biology are modulated by 5-AzaC and sheds light on the relevance of exploring lncRNAs in response to drug treatments in parasites.


Asunto(s)
Azacitidina/farmacología , Inhibidores Enzimáticos/farmacología , ARN Largo no Codificante/metabolismo , Schistosoma mansoni/efectos de los fármacos , Animales , Epigénesis Genética/efectos de los fármacos , Estadios del Ciclo de Vida/efectos de los fármacos , ARN Largo no Codificante/genética , Schistosoma mansoni/genética , Schistosoma mansoni/metabolismo
17.
Parasit Vectors ; 13(1): 140, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32178714

RESUMEN

BACKGROUND: Schistosomiasis chemotherapy is largely based on praziquantel (PZQ). Although PZQ is very safe and tolerable, it does not prevent reinfection and emerging resistance is a primary concern. Recent studies have shown that the targeting of epigenetic machinery in Schistosoma mansoni may result in severe alterations in parasite development, leading to death. This new route for drug discovery in schistosomiasis has focused on classes of histone deacetylases (HDACs) and histone acetyltransferases (HATs) as epigenetic drug targets. Schistosoma histone demethylases also seem to be important in the transition of cercariae into schistosomula, as well as sexual differentiation in adult worms. METHODS: The Target-Pathogen database and molecular docking assays were used to prioritize the druggability of S. mansoni histone demethylases. The transcription profile of Smp_03400 was re-analyzed using available databases. The effect of GSK-J4 inhibitor in schistosomula and adult worms' motility/viability/oviposition was assessed by in vitro assays. Ultrastructural analysis was performed on adult worms exposed to GSK-J4 by scanning electron microscopy, while internal structures and muscle fiber integrity was investigated by confocal microscopy after Langeron's carmine or phalloidin staining. RESULTS: The present evaluation of the potential druggability of 14 annotated S. mansoni demethylase enzymes identified the S. mansoni ortholog of human KDM6A/UTX (Smp_034000) as the most suitable druggable target. In silico analysis and molecular modeling indicated the potential for cofactor displacement by the chemical probe GSK-J4. Our re-analysis of transcriptomic data revealed that Smp_034000 expression peaks at 24 h in newly transformed schistosomula and 5-week-old adult worms. Moreover, this gene was highly expressed in the testes of mature male worms compared to the rest of the parasite body. In in vitro schistosome cultures, treatment with GSK-J4 produced striking effects on schistosomula mortality and adult worm motility and mortality, as well as egg oviposition, in a dose- and time-dependent manner. Unexpectedly, western blot assays did not demonstrate overall modulation of H3K27me3 levels in response to GSK-J4. Confocal and scanning electron microscopy revealed the loss of original features in muscle fibers and alterations in cell-cell contact following GSK-J4 treatment. CONCLUSIONS: GSK-J4 presents promising potential for antischistosomal control; however, the underlying mechanisms warrant further investigation.


Asunto(s)
Antihelmínticos/farmacología , Benzazepinas/farmacología , Descubrimiento de Drogas/métodos , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Modelos Moleculares , Pirimidinas/farmacología , Schistosoma mansoni/efectos de los fármacos , Animales , Biología Computacional , Epigénesis Genética/efectos de los fármacos , Femenino , Histona Demetilasas con Dominio de Jumonji/genética , Masculino , Microscopía Electrónica de Rastreo , Simulación del Acoplamiento Molecular , Schistosoma mansoni/genética , Schistosoma mansoni/ultraestructura , Esquistosomiasis mansoni/tratamiento farmacológico , Transcriptoma
18.
Mutat Res ; 654(1): 58-63, 2008 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-18579435

RESUMEN

The single cell gel electrophoresis or the comet assay was established in the freshwater snail Biomphalaria glabrata. For detecting DNA damage in circulating hemocytes, adult snails were irradiated with single doses of 2.5, 5, 10 and 20 Gy of (60)Co gamma radiation. Genotoxic effect of ionizing radiation was detected at all doses as a dose-related increase in DNA migration. Comet assay in B. glabrata demonstrated to be a simple, fast and reliable tool in the evaluation of genotoxic effects of environmental mutagens.


Asunto(s)
Bioensayo/métodos , Biomphalaria , Daño del ADN , Monitoreo del Ambiente/métodos , Animales , Biomphalaria/genética , Biomphalaria/efectos de la radiación , Ensayo Cometa , Relación Dosis-Respuesta en la Radiación , Rayos gamma , Hemolinfa/efectos de la radiación , Sensibilidad y Especificidad
19.
Mol Biochem Parasitol ; 221: 23-31, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29477861

RESUMEN

Schistosomiasis is a neglected tropical disease caused by trematodes of the genus Schistosoma which have a complex life cycle characterized by an asexual multiplication phase in the snail intermediate host and a sexual reproduction phase in the mammalian definitive host. The initial steps of the human host infection involve the secretion of proteins contained in the acetabular glands of cercariae that promote parasite adhesion and proteolysis of the skin layers. Herein, we performed a functional analysis of SmVAL18, identified as one of the three SCP/TAPS proteins constituent of cercarial secretions. We evaluated the SmVAL18 binding to immobilized macromolecules of the extracellular matrix (ECM) and to plasma components. Recombinant protein, expressed in E. coli, was found to maintain an ordered secondary structure typical of the SCP/TAPS domain after purification. Expression of native SmVAL18 protein was verified to be restricted to cercariae and 3-h schistosomula stages; furthermore, the protein was observed in the corresponding secretions, confirming that SmVAL18 is secreted during the first 3 h of in vitro culture. rSmVAL18 was able to interact specifically with plasminogen (PLG) and enhance its conversion into plasmin in the presence of the urokinase-type plasminogen activator (uPA). Protein homology modelling suggested that the PLG-rSmVAL18 interaction was mediated by lysine residues of the protein. This was supported by in vitro data using the lysine analogue, 6-aminocaproic acid (ACA), which abolished the interaction. Finally, our results showed that both cercariae and 3-h schistosomula, as well as their corresponding secretions, exhibited the capacity to bind PLG and enhance its conversion into plasmin in vitro in the same way as observed for the recombinant protein. In conclusion, our findings show that SmVAL18 is a novel PLG-binding protein secreted during the early stages of the mammalian-host infection.


Asunto(s)
Alérgenos/metabolismo , Proteínas del Helminto/metabolismo , Plasminógeno/metabolismo , Schistosoma mansoni/metabolismo , Esquistosomiasis mansoni/parasitología , Alérgenos/aislamiento & purificación , Animales , Proteínas Portadoras , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Fibrinolíticos , Expresión Génica , Proteínas del Helminto/aislamiento & purificación , Ratones Endogámicos BALB C , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Schistosoma mansoni/crecimiento & desarrollo
20.
PLoS Pathog, v. 19, n. 5, e1011369, mai. 2023
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-4900

RESUMEN

The trematode parasite Schistosoma mansoni causes schistosomiasis, which affects over 200 million people worldwide. Schistosomes are dioecious, with egg laying depending on the females’ obligatory pairing with males. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein-coding potential that have been involved in other species with reproduction, stem cell maintenance, and drug resistance. In S. mansoni, we recently showed that the knockdown of one lncRNA affects the pairing status of these parasites. Here, we re-analyzed public RNA-Seq data from paired and unpaired adult male and female worms and their gonads, obtained from mixed-sex or single-sex cercariae infections, and found thousands of differentially expressed pairing-dependent lncRNAs among the 23 biological samples that were compared. The expression levels of selected lncRNAs were validated by RT-qPCR using an in vitro unpairing model. In addition, the in vitro silencing of three selected lncRNAs showed that knockdown of these pairing-dependent lncRNAs reduced cell proliferation in adult worms and their gonads, and are essential for female vitellaria maintenance, reproduction, and/or egg development. Remarkably, in vivo silencing of each of the three selected lncRNAs significantly reduced worm burden in infected mice by 26 to 35%. Whole mount in situ hybridization experiments showed that these pairing-dependent lncRNAs are expressed in reproductive tissues. These results show that lncRNAs are key components intervening in S. mansoni adult worm homeostasis, which affects pairing status and survival in the mammalian host, thus presenting great potential as new therapeutic target candidates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA