Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 674: 190-198, 2023 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-37532637

RESUMEN

Cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) are a promising cell source for regenerative medicine and drug discovery. However, the use of animal models for studying human cardiomyocytes derived from hiPSCs in vivo is limited and challenging. Given the shared properties between humans and zebrafish, their ethical advantages over mammalian models, and their immature immune system that is rejection-free against xenografted human cells, zebrafish provide a suitable alternative model for xenograft studies. We microinjected fluorescence-labeled cardiac lineage cells derived from hiPSCs, specifically mesoderm or cardiac mesoderm cells, into the yolk and the area proximal to the outflow tract of the linear heart at 24 hours post-fertilization (hpf). The cells injected into the yolk survived and did not migrate to other tissues. In contrast, the cells injected contiguous with the outflow tract of the linear heart migrated into the pericardial cavity and heart. After 1 day post injection (1 dpi, 22-24 hpi), the injected cells migrated into the pericardial cavity and heart. Importantly, we observed heartbeat-like movements of some injected cells in the zebrafish heart after 1 dpi. These results suggested successful xenografting of hiPSC-derived cardiac lineage cells into the zebrafish embryo heart. Thus, we developed a valuable tool using zebrafish embryos as a model organism for investigating the molecular and cellular mechanisms involved in the grafting process. This is essential in developing cell transplantation-based cardiac therapeutics as well as for drug testing, notably contributing to advancements in the field of cardio-medicine.


Asunto(s)
Células Madre Pluripotentes Inducidas , Pez Cebra , Animales , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Diferenciación Celular , Trasplante Heterólogo , Xenoinjertos , Miocitos Cardíacos , Mamíferos
2.
Beilstein J Org Chem ; 19: 1604-1614, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37915559

RESUMEN

Breynia spp. are a key source of sulfur-containing spiroketal glycosides with potential anti-inflammatory activity. In this study, three new sulfur-containing spiroketals - breynin J (1), epibreynin J (2), and probreynogenin (3) - along with four known compounds - probreynin I (4), phyllaemblic acid (5), breynin B (6), and epibreynin B (7) - were isolated from the roots of Breynia disticha. The structures of compounds 1-7 were elucidated by extensive 1D and 2D NMR spectroscopic analyses, including 1D total correlation spectroscopy (TOCSY), HSQC, HMBC, double quantum-filtered (DQF)-COSY, heteronuclear two-bond correlation (H2BC), and HSQC-TOCSY experiments, as well as high-resolution electrospray ionization HRESIMS analysis, and quantum chemical electronic CD calculations. Furthermore, the absolute configurations of sugar residues were determined by derivatization of the hydrolysates with ʟ-cysteine methyl ester and o-tolyl isothiocyanate followed by HPLC analysis. The anti-inflammatory effects of the isolated compounds were evaluated based on the mRNA levels of proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage cells. Compounds 1, 2, 6, and 7 inhibited the increase in interleukin (IL)-1ß and IL-6 mRNA levels stimulated by LPS. Moreover, the most potent compound 7 was found to significantly inhibit the production of IL-1ß and IL-6 proteins, as revealed by the analysis of culture supernatants.

3.
Methods ; 191: 23-31, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32334080

RESUMEN

Genetically modified mouse models are essential for in vivo investigation of gene function and human disease research. Targeted mutations can be introduced into mouse embryos using genome editing technology such as CRISPR-Cas. Although mice with small indel mutations can be produced, the production of mice carrying large deletions or gene fragment knock-in alleles remains inefficient. We introduced the nuclear localisation property of Cdt1 protein into the CRISPR-Cas system for efficient production of genetically engineered mice. Mouse Cdt1-connected Cas9 (Cas9-mC) was present in the nucleus of HEK293T cells and mouse embryos. Cas9-mC induced a bi-allelic full deletion of Dmd, GC-rich fragment knock-in, and floxed allele knock-in with high efficiency compared to standard Cas9. These results indicate that Cas9-mC is a useful tool for producing mouse models carrying targeted mutations.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular , Proteínas de Unión al ADN , Técnicas de Sustitución del Gen , Células HEK293 , Humanos , Ratones , Cigoto
4.
Beilstein J Org Chem ; 16: 2100-2107, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32952726

RESUMEN

Two new azaphilones, namely muyocopronones A (1) and B (2), were isolated from the cultures of an endophytic fungus Muyocopron laterale ECN279. Their structures were elucidated by extensive spectroscopic analysis. Their absolute configurations were determined using the modified Mosher's method and through comparisons of experimental and calculated electronic circular dichroism data. In addition, muyocopronone B (2) was found to exhibit a weak antibacterial activity against some Gram-positive bacteria.

5.
Beilstein J Org Chem ; 16: 290-296, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32180845

RESUMEN

Talaromycones A (1) and B (2), new xanthenediones, were isolated from the cultures of Talaromyces sp. ECN211, an endophytic fungus, along with α-diversonolic ester (3), aspergillusone B (4), glauconic acid (5), and rosellisin (6). The planar structures of 1 and 2 were elucidated by extensive spectroscopic analyses. Furthermore, the absolute configurations of 1-4 were determined by single-crystal X-ray diffraction and electronic circular dichroism spectroscopy (ECD). In addition, the crystallographic data for 5 were updated for the first time in over 50 years.

6.
J Nat Prod ; 82(12): 3347-3356, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31815465

RESUMEN

Paraconiothins A-J (1-10), 10 new sesquiterpenoids, as well as five known sesquiterpenoids, were isolated from the cultures of the endophytic fungus Paraconiothyrium brasiliense ECN-258. The structures of the sesquiterpenoids were elucidated by extensive spectroscopic analysis. Furthermore, the absolute structures of 7 and 8 were determined by comparing their experimental and computed electronic circular dichroism data. Paraconiothins A-G (1-7) were eremophilane sesquiterpenoids, while paraconiothins H-J (8-10) had new or rare carbon frameworks that are possibly biosynthesized by a pathway involving the rearrangement of eremophilane sesquiterpenoids. Paraconiothins C (3) and I (9) exhibited an inhibitory effect on the liver X receptor α at a concentration of 50 µM.


Asunto(s)
Ascomicetos/química , Sesquiterpenos Policíclicos/aislamiento & purificación , Estructura Molecular , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/farmacología , Análisis Espectral/métodos
7.
J Reprod Dev ; 65(1): 1-5, 2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30518723

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas-based genome editing technology has enabled manipulation of the embryonic genome. Unbiased whole genome sequencing comparing parents to progeny has revealed that the rate of Cas9-induced mutagenesis in mouse embryos is indistinguishable from the background rate of de novo mutation. However, establishing the best practice to confirm on-target alleles of interest remains a challenge. We believe that improvement in editing strategies and screening methods for founder mice will contribute to the generation of quality-controlled animals, thereby ensuring reproducibility of results in animal studies and advancing the 3Rs (replacement, reduction, and refinement).


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas/genética , Embrión de Mamíferos , Edición Génica/métodos , Mutagénesis , Animales , Animales Modificados Genéticamente/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Ratones , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Secuenciación Completa del Genoma
8.
Molecules ; 24(17)2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31461933

RESUMEN

In response to cellular stresses, activating transcriptional factor 4 (ATF4) regulates the expression of both stress-relieving genes and apoptosis-inducing genes, eliciting cell fate determination. Since pharmacological activation of ATF4 exerts potent anti-tumor effects, modulators of ATF4 activation may have potential in cancer therapy. We herein attempted to identify small molecules that activate ATF4. A cell-based screening to monitor TRB3 promoter activation was performed using crude drugs used in traditional Japanese Kampo medicine. We found that an extract from Sophora flavescens roots exhibited potent TRB3 promoter activation. The activity-guided fractionation revealed that kurarinone was identified as the active ingredient. Intriguingly, ATF4 activation in response to kurarinone required PKR-like endoplasmic reticulum kinase (PERK). Moreover, kurarinone induced the cyclin-dependent kinase inhibitor p21 as well as cytostasis in cancer cells. Importantly, the cytostatic effect of kurarinone was reduced by pharmacological inhibition of PERK. These results indicate that kurarinone triggers ATF4 activation through PERK and exerts cytostatic effects on cancer cells. Taken together, our results suggest that modulation of the PERK-ATF4 pathway with kurarinone has potential as a cancer treatment.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Proteínas de Ciclo Celular/genética , Flavonoides/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Represoras/genética , Sophora/química , eIF-2 Quinasa/metabolismo , Factor de Transcripción Activador 4/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Células HeLa , Humanos , Fosforilación , Regiones Promotoras Genéticas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , eIF-2 Quinasa/genética
9.
BMC Complement Altern Med ; 18(1): 138, 2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-29720160

RESUMEN

BACKGROUND: Brazilian green propolis is produced by mixing secretions from Africanized honey bees with exudate, mainly from Baccharis dracunculifolia. Brazilian propolis is especially rich in flavonoids and cinammic acid derivatives, and it has been widely used in folk medicine owing to its anti-inflammatory, anti-viral, tumoricidal, and analgesic effects. Moreover, it is applied to prevent metabolic disorders, such as type 2 diabetes and arteriosclerosis. Previously, we demonstrated that propolis ethanol extract ameliorated type 2 diabetes in a mouse model through the resolution of adipose tissue inflammation. The aims of this study were to identify the immunosuppressive cells directly elicited by propolis extract and to evaluate the flavonoids that induce such cells. METHODS: Ethanol extract of Brazilian propolis (PEE; 100 mg/kg i.p., twice a week) was injected into lean or high fat-fed obese C57BL/6 mice or C57BL/6 ob/ob mice for one month. Subsequently, immune cells in visceral adipose tissue and the peritoneal cavity were monitored using FACS analysis. Isolated macrophages and the macrophage-like cell line J774.1 were treated with PEE and its constituent components, and the expression of immune suppressive myeloid markers were evaluated. Finally, we injected one of the identified compounds, kaempferol, into C57BL/6 mice and performed FACS analysis on the adipose tissue. RESULTS: Intraperitoneal treatment of PEE induces CD11b+, Gr-1+ myeloid-derived suppressor cells (MDSCs) in visceral adipose tissue and the peritoneal cavity of lean and obese mice. PEE directly stimulates cultured M1 macrophages to transdifferentiate into MDSCs. Among twelve compounds isolated from PEE, kaempferol has an exclusive effect on MDSCs induction in vitro. Accordingly, intraperitoneal injection of kaempferol causes accumulation of MDSCs in the visceral adipose tissue of mice. CONCLUSION: Brazilian PEE and its compound kaempferol strongly induce MDSCs in visceral adipose tissue at a relatively early phase of inflammation. Given the strong anti-inflammatory action of MDSCs, the induction of MDSCs by PEE and kaempferol is expected to be useful for anti-diabetic and anti-inflammatory therapies.


Asunto(s)
Quempferoles/farmacología , Macrófagos/efectos de los fármacos , Células Supresoras de Origen Mieloide/efectos de los fármacos , Preparaciones de Plantas/farmacología , Própolis/farmacología , Tejido Adiposo/citología , Animales , Brasil , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Etanol , Citometría de Flujo , Inflamación/metabolismo , Quempferoles/química , Masculino , Ratones , Ratones Endogámicos C57BL , Cavidad Peritoneal/citología , Preparaciones de Plantas/química , Própolis/química
10.
Bioorg Med Chem ; 25(16): 4253-4258, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28662965

RESUMEN

The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcriptional factor belonging to the basic helix-loop-helix-Per-Ahr/Arnt-Sim family. In this study, we evaluated the AhR agonistic activities of 12 xanthones isolated from the roots of M. cochinchinensis var. gerontogea using HepG2 cells transfected with pX4TK-Luc reporter plasmids. Gerontoxanthone B (GXB) showed the most potent activity at a concentration of 10µM, and the activity was inhibited by AhR antagonists such as GNF-351. GXB also increased cytochrome P450 1A1 mRNA and protein levels in HepG2 cells. Similar to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin, however, GXB suppressed the IL-1ß-induced mRNA level of SAA1, an acute-phase response gene that is up-regulated AhR-dependently but XRE-independently. Thus, GXB shows XRE-dependent transcriptional activity and XRE-independent activity involving AhR.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Maclura/química , Receptores de Hidrocarburo de Aril/agonistas , Xantonas/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas , Xantonas/química , Xantonas/aislamiento & purificación
11.
Biochim Biophys Acta ; 1840(10): 3034-41, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24972164

RESUMEN

BACKGROUND: Brazilian green propolis (BGP), a resinous substance produced from Baccharis dracunculifolia by Africanized honey bees (Apis mellifera), is used as a folk medicine. Our present study explores the retinoid X receptor (RXR) agonistic activity of BGP and the identification of an RXR agonist in its extract. METHODS: RXRα agonistic activity was evaluated using a luciferase reporter gene assay. Isolation of the RXRα agonist from the ethanolic extract of BGP was performed using successive silica gel and a reversed phase column chromatography. The interaction between the isolated RXRα agonist and RXRα protein was predicted by a receptor-ligand docking simulation. The nuclear receptor (NR) cofactor assay was used to estimate whether the isolated RXRα agonist bound to various NRs, including RXRs and peroxisome proliferator-activated receptors (PPARs). We further examined its effect on adipogenesis in 3T3-L1 fibroblasts. RESULTS: We identified drupanin as an RXRα agonist with an EC50 value of 4.8 ± 1.0 µM. Drupanin activated three RXR subtypes by a similar amount and activated PPARγ moderately. Additionally, drupanin induced adipogenesis and elevated aP2 mRNA levels in 3T3-L1 fibroblasts. CONCLUSIONS: Drupanin, a component of BGP, is a novel RXR agonist with slight PPARγ agonistic activity. GENERAL SIGNIFICANCE: This study revealed for the first time that BGP activates RXR and drupanin is an RXR agonist in its extract.


Asunto(s)
Simulación del Acoplamiento Molecular , PPAR gamma/agonistas , Própolis , Receptor alfa X Retinoide/agonistas , Células 3T3-L1 , Adipogénesis/efectos de los fármacos , Adipogénesis/fisiología , Animales , Abejas , Brasil , Células HEK293 , Humanos , Ratones , PPAR gamma/genética , PPAR gamma/metabolismo , Própolis/química , Própolis/farmacología , Receptor alfa X Retinoide/genética , Receptor alfa X Retinoide/metabolismo
12.
Acc Chem Res ; 47(1): 157-67, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-23962222

RESUMEN

Hollow, inorganic nanoscale capsules have many applications, from the delivery of encapsulated products for cosmetic and medicinal purposes to use as lightweight composite materials. Early methods for producing inorganic hollow nanospheres using hard templates suffered from low product yield and shell weakness upon template removal. In the past decade, researchers have turned to amphiphilic copolymers to synthesize hollow nanostructures and ordered mesoporous materials. Amphiphilic molecules self-assemble into well-defined nanostructures including spherical micelles. Micelles formed from simple, two-component AB diblock and ABA triblock copolymers, however, have been difficult to work with to construct inorganic hollow nanoparticles, because the corona of the micelle, which serves as the template for the shell, becomes unstable as it absorbs inorganic shell precursors, causing aggregates to form. Newly developed, three-component ABC triblock copolymers may solve this problem. They provide nanoassemblies with more diverse morphological and functional features than AB diblock and ABA triblock copolymers. Micelles formed from ABC triblock copolymers in selective solvents that dissolve only one or two of the blocks provide templates for these improved nanoassemblies. By manipulating individual polymer blocks, one can "encode" additional features at the molecular level. For instance, modifying the functional groups or substitution patterns of the blocks allows better morphological and size control. Insights into polymer self-assembly gained over years of work in our group have set the stage to systematically engineer inorganic spherical hollow nanoparticles using ABC triblock copolymers. In this Account, we report our recent progress in producing diverse, inorganic hollow spherical nanospheres from asymmetric triblock copolymeric micelles with core-shell-corona architecture as templates. We discuss three classes of polymeric micelles-with neutral, cationic, and anionic shell structures-that allow fabrication of a variety of hollow nanoparticles. Importantly, we synthesized all of these particles in water, avoiding use of hazardous organic solvents. We have designed the precursor of the inorganic material to be selectively sorbed into the shell domain, leaving the corona free from the inorganic precursors that would destabilize the micelle. The core, meanwhile, is the template for the formation of the hollow void. By rationally tailoring experimental parameters, we readily and selectively obtained a variety of hollow nanoparticles including silica, hybrid silicas, metal-oxides, metal-carbonates, metal-sulfates, metal-borates, and metal-phosphates. Finally, we highlight the state-of-the-art techniques we used to characterize these nanoparticles, and describe experiments that demonstrate the potential of these hollow particles in drug delivery, and as anode and cathode materials for lithium-ion batteries.

13.
Chemistry ; 21(38): 13164-74, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26219746

RESUMEN

Stimuli-responsive materials are of immense importance because of their ability to undergo alteration of their properties in response to their environment. The properties of such materials can be tuned by subtle adjustments in temperature, pH, light, and so forth. Among such smart materials, multi-stimuli-responsive polymeric materials are of pronounced significance as they offer a wide range of applications and their properties can be tuned through several mechanisms. Here, we aim to highlight some recent studies showcasing the multi-stimuli-responsive character of these polymers, which are still relatively little known compared to their single-stimuli-responsive counterpart.

14.
Bioorg Med Chem Lett ; 25(9): 1998-2001, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25838141

RESUMEN

A new xanthone (1) and a new naturally occurring xanthone (2) were isolated from the roots of Maclura cochinchinensis (Lour.) Corner var. gerontogea (Sieb. et Zucc.) Ohashi together with 10 known xanthones (3-12). Their structures were established by spectroscopic analyses including 1D and 2D NMR. Their retinoic acid receptor-α agonistic activity was evaluated using a luciferase reporter assay. Compound 2, gerontoxanthone A (3), gerontoxanthone B (4), and cudraxanthone I (11) showed moderate concentration-dependent activity. Furthermore, these four xanthones synergistically increased transcriptional activity in this assay in the presence of bexarotene, an RXR agonist.


Asunto(s)
Maclura/química , Raíces de Plantas/química , Receptores de Ácido Retinoico/agonistas , Xantonas/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Receptor alfa de Ácido Retinoico , Relación Estructura-Actividad , Xantonas/química , Xantonas/aislamiento & purificación
15.
J Nat Prod ; 77(7): 1670-7, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-24959987

RESUMEN

The retinoid X receptor (RXR) plays a critical role in transcriptional regulation via formation of an RXR homodimer or heterodimers with partner nuclear receptors. Despite the numerous beneficial effects, only a limited number of naturally occurring RXR agonists are known. In this report, two prenylated flavanones (1 and 2) isolated from Sophora tonkinensis were identified as new rexinoids that preferentially activated RXRs, relative to the retinoic acid receptor. The activities of 1 and 2 were the most potent among naturally occurring rexinoids, yet 2 orders of magnitude lower than the synthetic rexinoid bexarotene. Compounds 1 and 2 activated particular RXR heterodimers in a manner similar to bexarotene. A microarray assay followed by quantitative real-time polymerase chain reaction analyses on RNAs isolated from C2C12 myotubes treated with 1 or 2 demonstrated that they significantly increased mRNA levels of lipoprotein lipase, angiopoietin-like protein 4, and heme oxygenase-1. In contrast, bexarotene preferentially potentiated transcription of genes involved in lipogenesis and lipid metabolism such as sterol regulatory element-binding protein-1, fatty acid synthase, and apolipoprotein D by a liver X receptor agonist. In this study, we have demonstrated that two newly identified naturally occurring rexinoids, 1 and 2, possess properties different from bexarotene.


Asunto(s)
Flavanonas/farmacología , Receptores X Retinoide/fisiología , Sophora/química , Tetrahidronaftalenos/síntesis química , Transcriptoma , Anticarcinógenos/química , Anticarcinógenos/farmacología , Bexaroteno , Flavanonas/química , Expresión Génica , Regulación de la Expresión Génica , Hemo-Oxigenasa 1/metabolismo , Receptores X del Hígado , Estructura Molecular , Receptores Nucleares Huérfanos , PPAR gamma/metabolismo , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares , Receptores de Ácido Retinoico , Transducción de Señal , Tetrahidronaftalenos/química , Tetrahidronaftalenos/farmacología
16.
Chemistry ; 19(15): 4812-7, 2013 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-23417774

RESUMEN

We have developed core-shell-corona-type polymeric micelles that can integrate multiple functions in one system, including the capability of accommodating hydrophobic dyes into core and hydrophilic drug into the shell, as well as pH-triggered drug-release. The neutral and hydrophilic corona sterically stabilizes the multifunctional polymeric micelles in aqueous solution. The mineralization of calcium phosphate (CaP) on the PAA domain not only enhances the diagnostic efficacy of organic dyes, but also works as a diffusion barrier for the controlled release.


Asunto(s)
Antineoplásicos/síntesis química , Cisplatino/farmacología , Sistemas de Liberación de Medicamentos/métodos , Polímeros/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Fosfatos de Calcio/química , Células Hep G2 , Humanos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Micelas , Polímeros/química , Polímeros/farmacología
17.
Sci Technol Adv Mater ; 14(4): 044402, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27877587

RESUMEN

Polymeric micelles with core-shell-corona nanoarchitecture were designed for intracellular therapeutic anti-cancer drug carriers. Poly(styrene-b-acrylic acid-b-ethylene glycol) (PS-b-PAA-b-PEG) asymmetric triblock copolymer underwent self-assembly in aqueous solution to form spherical micelles with hydrophobic PS core, anionic PAA shell and hydrophilic PEG corona. The anti-cancer drug (doxorubicin, DOX) was successfully incorporated into the polymeric micelles. The in vitro release experiment confirmed that the release of DOX from the micelles was inhibited at pH 7.4. In contrast, an accelerated release of DOX was observed at mildly acidic conditions such as pH 4.5. The excellent biocompatibility of our PS-b-PAA-b-PEG-based micelles made the synthesized nano-carrier best suited for the delivery of anti-cancer drugs.

18.
Polymers (Basel) ; 15(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37050353

RESUMEN

A laboratory-synthesized triblock copolymer poly(ethylene oxide-b-acrylic acid-b-styrene) (PEG-PAA-PS) was used as a template to synthesize hollow BaCO3 nanoparticles (BC-NPs). The triblock copolymer was synthesized using reversible addition-fragmentation chain transfer radical polymerization. The triblock copolymer has a molecular weight of 1.88 × 104 g/mol. Transmission electron microscopy measurements confirm the formation of spherical micelles with a PEG corona, PAA shell, and PS core in an aqueous solution. Furthermore, the dynamic light scattering experiment revealed the electrostatic interaction of Ba2+ ions with an anionic poly(acrylic acid) block of the micelles. The controlled precipitation of BaCO3 around spherical polymeric micelles followed by calcination allows for the synthesis of hollow BC-NPs with cavity diameters of 15 nm and a shell thickness of 5 nm. The encapsulation and release of methotrexate from hollow BC-NPs at pH 7.4 was studied. The cell viability experiments indicate the possibility of BC-NPs maintaining biocompatibility for a prolonged time.

19.
J Nat Med ; 77(2): 315-326, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36607539

RESUMEN

We previously synthesized two retinoid X receptor (RXR) agonists, 4'-hydroxy-3'-propyl-[1,1'-biphenyl]-3-propanoic acid ethyl ester (4'OHE) and 6-hydroxy-3'-propyl-[1,1'-biphenyl]-3-propanoic acid ethyl ester (6OHE), based on the structure of magnaldehyde B, a natural product obtained from Magnolia obovata. 4'OHE and 6OHE exhibited different selectivities for peroxisome proliferator-activated receptor (PPAR)/RXR heterodimers. To examine the regulatory effects of these compounds in adipogenesis, 3T3-L1 mouse preadipocytes were treated with a differentiation cocktail with or without test compounds to induce differentiation, and subsequently treated with test compounds in insulin-containing medium every alternate day. Lipid droplets were stained with Oil Red O to examine lipid accumulation. In addition, adipogenesis-related gene expression was measured using RT-qPCR and immunoblotting. The results showed that a PPARγ agonist, 4'OHE, which exerts agonistic effects on PPARγ and RXRα, enhanced adipogenesis similar to rosiglitazone. However, unlike GW501516, a PPARδ agonist, 6OHE and its hydrolysis product (6OHA), which exert agonistic effects on PPARδ and RXRα, suppressed adipogenesis. In a manner similar to 6OHE and 6OHA, bexarotene, an RXR agonist, suppressed adipocyte differentiation, and its anti-adipogenic effect was reversed by an RXR antagonist. Furthermore, 6OHA and bexarotene inhibited the increase in Pparγ2 and Cebpa mRNA levels 2 days after the induction of differentiation. We demonstrated the adipogenic effect of 4'OHE and anti-adipogenic effects of 6OHE and 6OHA in 3T3-L1 cells. Previously, RXR agonists have been reported to positively regulate the differentiation of mesenchymal stem cells into adipocytes, but our current data showed that they inhibited the differentiation of preadipocytes, at least 3T3-L1 cells, into adipocytes.


Asunto(s)
Lignanos , PPAR delta , Animales , Ratones , Adipogénesis , PPAR gamma/farmacología , Receptores X Retinoide/farmacología , Células 3T3-L1 , Propionatos/farmacología , Bexaroteno/farmacología , PPAR delta/farmacología , Diferenciación Celular , Lignanos/farmacología
20.
Lab Anim (NY) ; 52(10): 247-257, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37679611

RESUMEN

In vivo bioluminescence imaging (BLI) has been an invaluable noninvasive method to visualize molecular and cellular behaviors in laboratory animals. Bioluminescent reporter mice harboring luciferases for general use have been limited to a classical luciferase, Luc2, from Photinus pyralis, and have been extremely powerful for various in vivo studies. However, applicability of reporter mice for in vivo BLI could be further accelerated by increasing light intensity through the use of other luciferases and/or by improving the biodistribution of their substrates in the animal body. Here we created two Cre-dependent reporter mice incorporating luciferases oFluc derived from Pyrocoeli matsumurai and Akaluc, both of which had been reported previously to be brighter than Luc2 when using appropriate substrates; we then tested their bioluminescence in neural tissues and other organs in living mice. When expressed throughout the body, both luciferases emitted an intense yellow (oFluc) or far-red (Akaluc) light easily visible to the naked eye. oFluc and Akaluc were similarly bright in the pancreas for in vivo BLI; however, Akaluc was superior to oFluc for brain imaging, because its substrate, AkaLumine-HCl, was distributed to the brain more efficiently than the oFluc substrate, D-luciferin. We also demonstrated that the lights produced by oFluc and Akaluc were sufficiently spectrally distinct from each other for dual-color imaging in a single living mouse. Taken together, these novel bioluminescent reporter mice are an ideal source of cells with bright bioluminescence and may facilitate in vivo BLI of various tissues/organs for preclinical and biomedical research in combination with a wide variety of Cre-driver mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA