Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; 18(3): 83-87, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28444831

RESUMEN

A low modulation factor (MF) maintaining a good dose distribution contributes to the shortening of the delivery time and efficiency of the treatment plan in helical tomotherapy. The purpose of this study was to reduce the delivery time using initial values and the upper limit values of MF. First, patients with head and neck cancer (293 cases) or prostate cancer (181 cases) treated between June 2011 and July 2015 were included in the analysis of MF values. The initial MF value (MFinitial ) was defined as the average MFactual value, and the upper limit of the MF value (MFUL ) was defined according the following equation: MFUL = 2 × standard deviation of MFactual value + the average MFactual Next, a treatment plan was designed for patients with head and neck cancer (62 cases) and prostate cancer (13 cases) treated between December 2015 and June 2016. The average MFactual value for the nasopharynx, oropharynx, hypopharynx, and prostate cases decreased from 2.1 to 1.9 (p = 0.0006), 1.9 to 1.6 (p < 0.0001), 2.0 to 1.7 (p < 0.0001), and 1.8 to 1.6 (p = 0.0004) by adapting the MFinitial and the MFUL values, respectively. The average delivery time for the nasopharynx, oropharynx, hypopharynx, and prostate cases also decreased from 19.9 s cm-1 to 16.7 s cm-1 (p < 0.0001), 15.0 s cm-1 to 13.9 s cm-1 (p = 0.025), 15.1 s cm-1 to 13.8 s cm-1 (p = 0.015), and 23.6 s cm-1 to 16.9 s cm-1 (p = 0.008) respectively. The delivery time was shortened by the adaptation of MFinitial and MFUL values with a reduction in the average MFactual for head and neck cancer and prostate cancer cases.


Asunto(s)
Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Tomografía Computarizada Espiral , Humanos , Masculino , Dosificación Radioterapéutica , Factores de Tiempo
2.
Artículo en Japonés | MEDLINE | ID: mdl-27440704

RESUMEN

Although much evidence about the helical tomotherapy system are available, there is not a document about the procedure of quality assurance (QA) for changing the beam model. This study establishes the commissioning procedure for modifying the beam model of helical tomotherapy. Firstly, some intensity-modulated radiotherapy (IMRT) plans were created, and compared them with the calculated dose and the measured dose. Secondly, the absorbed doses to water in the machine-specific reference field and the plan-class specific reference field with a protocol in Japan; Standard Dosimetry of Absorbed Dose to Water in External Beam Radiotherapy (Standard Dosimetry 12) were measured. Thirdly, we reconfirmed patient-specific quality assurance. The recommended commissioning procedure after the change of the beam model was shown through three verification processes. This report would be helpful for not only changing the beam model of helical tomotherapy but also introducing Standard Dosimetry 12 to a clinic.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Humanos , Japón , Modelos Teóricos , Garantía de la Calidad de Atención de Salud , Radiometría/métodos , Radiometría/normas , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/instrumentación , Radioterapia de Intensidad Modulada/instrumentación , Agua
3.
Radiol Phys Technol ; 9(1): 53-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26298076

RESUMEN

Our aim was to determine whether a third-party quality assurance (QA) tool was suitable for the measurement of rotational output and beam quality in place of on-board detector signals. A Rotational Therapy Phantom 507 (507 Phantom) was used as a QA tool. The rotational output constancy (ROC507) and the beam quality index ([Formula: see text]) were evaluated by analysis of signals from an ion chamber inserted into the 507 Phantom. On-board detector signals were obtained for comparisons with the data from the 507 Phantom. The rotational output (ROC(detector)) and beam quality (corrected cone ratio; CCR) were determined by analysis of on-board detector signals that were generated by irradiation. The tissue phantom ratio at depth 20 and 10 cm (TPR20, 10) was measured with a Farmer-type ionization chamber inserted in a plastic-slab phantom. For rotational output measurement, the correlation coefficient between ROC507 and ROC(detector) values was 0.68 (p < 0.001). ROC507 and ROC(detector) values showed a reduced coefficient of variation after magnetron replacement, which was done during the measurement period. In addition, ROC507 values were reduced significantly along with ROC(detector) values after target replacement (p < 0.001). Regarding the beam quality index, [Formula: see text] showed a change similar to CCR and an increase similar to TPR20, 10 after magnetron/target replacement. This QA tool could check for daily rotational output and detect changes in rotational output and beam quality caused by magnetron or target failure as well as when on-board detector signals were used. Without needing a tomotherapy quality assurance license, we could effectively and quantitatively estimate the rotational output and beam quality at a low cost.


Asunto(s)
Fantasmas de Imagen , Garantía de la Calidad de Atención de Salud , Radioterapia de Intensidad Modulada/instrumentación , Rotación , Campos Magnéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA