RESUMEN
Fluorescent nanocrystal quantum dots (QDs) have been applied to a wide range of biological studies by taking advantage of their fluorescence properties. Here we show that QDs conjugated with antibody against neutrophil peroxidase, myeloperoxidase (MPO). We designed a novel method to conjugate QDs to antibody without losing any antibody function including their antigen recognizing and Fc-receptor binding activities. When we applied anti-MPO antibody (Ab) with conventional organic probes in the case of immunostaining of living cells, the antibodies lost their fluorescence because of MPO enzymic activity to produce reactive oxygen species. Our QD-conjugated anti-MPO (alpha-MPO-QDs) can detect MPO on the surface of activated neutrophils. In addition, anti-MPO-QDs did not react to the inactivated neutrophils. In conclusion, we demonstrated that antibody visualized the expression of MPO on the neutrophil surface after stimulation with proinflammatory cytokines. Taken together, these techniques have the possibility that QDs can reveal the activation of neutrophils by immunostaining and flow cytometric analysis as a powerful tool for diagnosis of the neutrophil activation in vitro.
Asunto(s)
Anticuerpos Anticitoplasma de Neutrófilos , Nanopartículas , Neutrófilos/inmunología , Peroxidasa/análisis , Puntos Cuánticos , Anticuerpos Anticitoplasma de Neutrófilos/administración & dosificación , Anticuerpos Anticitoplasma de Neutrófilos/química , Complejo Antígeno-Anticuerpo , Antígenos de Superficie/análisis , Separación Celular , Citometría de Flujo , Técnica del Anticuerpo Fluorescente Directa/métodos , Humanos , Nanopartículas/química , Activación Neutrófila , Peroxidasa/inmunología , Coloración y EtiquetadoRESUMEN
Processing and manipulation of highly conductive pristine graphene in large quantities are still major challenges in the practical application of graphene for electric device. In the present study, we report the liquid-phase exfoliation of graphite in toluene using well-defined poly(3-hexylthiophene) (P3HT) to produce a P3HT/graphene composite. We synthesize and use regioregular P3HT with controlled molecular weights as conductive dispersants for graphene. Simple ultrasonication of graphite flakes with the P3HT successfully produces single-layer and few-layer graphene sheets dispersed in toluene. The produced P3HT/graphene composite can be used as conductive graphene ink, indicating that the P3HT/graphene composite has high electrical conductivity owing to the high conductivity of P3HT and graphene. The P3HT/graphene composite also works as an oxidation-resistant and conductive film for a copper substrate, which is due to the high gas-barrier property of graphene.