Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(11): 6707-6717, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38738637

RESUMEN

The abnormal expansion of GGGGCC/GGCCCC hexanucleotide repeats (HR) in C9orf72 is associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Structural polymorphisms of HR result in the multifactorial pathomechanism of ALS/FTD. Consequently, many ongoing studies are focused at developing therapies targeting pathogenic HR RNA. One of them involves small molecules blocking sequestration of important proteins, preventing formation of toxic nuclear foci. However, rational design of potential therapeutics is hindered by limited number of structural studies of RNA-ligand complexes. We determined the crystal structure of antisense HR RNA in complex with ANP77 ligand (1.1 Šresolution) and in the free form (0.92 and 1.5 Šresolution). HR RNA folds into a triplex structure composed of four RNA chains. ANP77 interacted with two neighboring single-stranded cytosines to form pseudo-canonical base pairs by adopting sandwich-like conformation and adjusting the position of its naphthyridine units to the helical twist of the RNA. In the unliganded structure, the cytosines formed a peculiar triplex i-motif, assembled by trans C•C+ pair and a third cytosine located at the Hoogsteen edge of the C•C+ pair. These results extend our knowledge of the structural polymorphisms of HR and can be used for rational design of small molecules targeting disease-related RNAs.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Humanos , Ligandos , ARN sin Sentido/genética , ARN sin Sentido/química , ARN sin Sentido/metabolismo , Conformación de Ácido Nucleico , Expansión de las Repeticiones de ADN/genética , Cristalografía por Rayos X , Modelos Moleculares
2.
Nucleic Acids Res ; 51(18): 9533-9541, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37615580

RESUMEN

Single-stranded RNA folds into a variety of secondary and higher-order structures. Distributions and dynamics of multiple RNA conformations are responsible for the biological function of RNA. We here developed a photoswitchable molecular glue for RNA, which could reversibly control the association of two unpaired RNA regions in response to light stimuli. The photoswitchable molecular glue, NCTA, is an RNA-binding ligand possessing a photoisomerizable azobenzene moiety. Z-NCTA is an active ligand for the target RNA containing 5'-WGG-3'/5'-WGG-3' (W = U or A) site and stabilizes its hybridized state, while its isomer E-NCTA is not. Photoreversible isomerization of NCTA enabled control of the secondary and tertiary structure of the target RNA. The RNA-cleaving activity of hammerhead ribozyme, where appropriate RNA folding is necessary, could be reversibly regulated by photoirradiation in cells treated with NCTA, demonstrating precise photocontrol of RNA structure and function by the photoswitchable molecular glue.

3.
Bioorg Med Chem ; 98: 117580, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38194737

RESUMEN

We here report a new molecule DoNA binding to a CAG repeat RNA. DoNA is a dimer of the NA molecule that we previously reported. NA binds with high affinity to a CAG repeat DNA but not significantly to a CAG repeat RNA. Binding analyses using SPR and CSI-TOF MS indicated a significant increase in the affinity of DoNA to a single stranded CAG repeat RNA compared to NA. Systematic investigation of the RNA motifs bound by DoNA using hairpin RNA models revealed that DoNA binds to the CAG units at overhang and terminal positions, and notably, it binds to the structurally flexible internal and hairpin loop region.


Asunto(s)
ARN , Repeticiones de Trinucleótidos , ARN/química , ADN/química , Motivos de Nucleótidos
4.
Nucleic Acids Res ; 50(9): 5369-5383, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35511080

RESUMEN

The -1 programmed ribosomal frameshifting (-1 PRF) has been explored as a gene regulatory circuit for synthetic biology applications. The -1 PRF usually uses an RNA pseudoknot structure as the frameshifting stimulator. Finding a ligand-responsive pseudoknot with efficient -1 PRF activity is time consuming and is becoming a bottleneck for its development. Inserting a guanine to guanine (GG)-mismatch pair in the 5'-stem of a small frameshifting pseudoknot could attenuate -1 PRF activity by reducing stem stability. Thus, a ligand-responsive frameshifting pseudoknot can be built using GG-mismatch-targeting small molecules to restore stem stability. Here, a pseudoknot requiring stem-loop tertiary interactions for potent frameshifting activity was used as the engineering template. This considerably amplified the effect of mismatch destabilization, and led to creation of a mammalian -1 PRF riboswitch module capable of mediating premature translation termination as a synthetic regulatory mode. Application of the synthetic circuit allowed ligand-dependent ATF6N mimic formation for the activation of protein folding-related genes involved in the unfolded protein response without an ER-stress inducing agent. With the availability of mismatch-targeting molecules, the tailored module thus paves the way for various mismatch plug-ins to streamline highly efficient orthogonal ligand-dependent -1 PRF stimulator development in the synthetic biology toolbox.


Asunto(s)
Sistema de Lectura Ribosómico , ARN Viral , Animales , Guanina , Ligandos , Mamíferos/genética , Conformación de Ácido Nucleico , ARN Viral/genética
5.
Nucleic Acids Res ; 50(17): 9621-9631, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36095126

RESUMEN

Trinucleotide repeat (TNR) diseases are caused by the aberrant expansion of CXG (X = C, A, G and T) sequences in genomes. We have reported two small molecules binding to TNR, NCD, and NA, which strongly bind to CGG repeat (responsible sequence of fragile X syndrome) and CAG repeat (Huntington's disease). The NMR structure of NA binding to the CAG/CAG triad has been clarified, but the structure of NCD bound to the CGG/CGG triad remained to be addressed. We here report the structural determination of the NCD-CGG/CGG complex by NMR spectroscopy and the comparison with the NA-CAG/CAG complex. While the NCD-CGG/CGG structure shares the binding characteristics with that of the NA-CAG/CAG complex, a significant difference was found in the overall structure caused by the structural fluctuation at the ligand-bound site. The NCD-CGG/CGG complex was suggested in the equilibrium between stacked and kinked structures, although NA-CAG/CAG complex has only the stacked structures. The dynamic fluctuation of the NCD-CGG/CGG structure at the NCD-binding site suggested room for optimization in the linker structure of NCD to gain improved affinity to the CGG/CGG triad.


Asunto(s)
Carbamatos , Naftiridinas/química , ADN/química , Ligandos , Espectroscopía de Resonancia Magnética , Repeticiones de Trinucleótidos
6.
J Am Chem Soc ; 145(2): 1310-1318, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36597667

RESUMEN

Chemical properties have been based on statistical averages since the introduction of Avogadro's number. The lack of suitable methods for counting identified single molecules has posed challenges to counting statistics. The selectivity, affinity, and mode of hydrogen bonding between base and small molecules that make up DNA, which is vital for living organisms, have not yet been revealed at the single molecule level. Here, we show the quantitation of the above-mentioned parameters via single-molecule counting based on the combination of single-molecule electrical measurements and AI. The binding selectivity values of five ligands to four different base molecules were evaluated quantitatively by determining the ratio of the number of aggregates in a solution mixture of base molecules and a ligand. In addition, we show the ligand dependence of the mode and number of microscopic hydrogen bonds via single-molecule counting and quantum chemical calculations.


Asunto(s)
ADN , Enlace de Hidrógeno , Ligandos , ADN/química
7.
Anal Chem ; 95(26): 9729-9733, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37341999

RESUMEN

We have developed a DNA sensor that can be finalized to detect a specific target on demand. The electrode surface was modified with 2,7-diamino-1,8-naphthyridine (DANP), a small molecule with nanomolar affinity for the cytosine bulge structure. The electrode was immersed in a solution of synthetic probe-DNA that had a cytosine bulge structure at one end and a complementary sequence to the target DNA at the other end. The strong binding between the cytosine bulge and DANP anchored the probe DNAs to the electrode surface, and the electrode became ready for target DNA sensing. The complementary sequence portion of the probe DNA can be changed as requested, allowing for the detection of a wide variety of targets. Electrochemical impedance spectroscopy (EIS) with the modified electrode detected target DNAs with a high sensitivity. The charge transfer resistance (Rct) extracted from EIS showed a logarithmic relationship with the concentration of target DNA. The limit of detection (LoD) was less than 0.01 µM. By this method, highly sensitive DNA sensors for various target sequences could be easily produced.


Asunto(s)
Técnicas Biosensibles , Espectroscopía Dieléctrica , Ligandos , ADN/química , Sondas de ADN , Citosina , Electrodos , Técnicas Electroquímicas/métodos
8.
Bioconjug Chem ; 34(12): 2187-2193, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37948852

RESUMEN

Understanding the pharmacokinetics of drug candidates of interest in the brain and evaluating drug delivery to the brain are important for developing drugs targeting the brain. Previously, we demonstrated that a CAG repeat-binding small molecule, naphthyridine-azaquinolone (NA), resulted in repeat contraction in mouse models of dentatorubral-pallidoluysian atrophy and Huntington's disease caused by aberrant expansion of CAG repeats. However, the intracerebral distribution and drug deliverability of NA remain unclear. Here, we report three-dimensional whole-brain imaging of an externally administered small molecule using tissue clearing and light sheet fluorescence microscopy (LSFM). We designed and synthesized an Alexa594-labeled NA derivative with a primary amine for whole-brain imaging (NA-Alexa594-NH2), revealing the intracerebral distribution of NA-Alexa594-NH2 after intraparenchymal and intracerebroventricular administrations by whole-brain imaging combined with tissue clearing and LSFM. We also clarified that intranasally administered NA-Alexa594-NH2 was delivered into the brain via multiple nose-to-brain pathways by tracking the time-dependent change in the intracerebral distribution. Whole-brain imaging of small molecules by tissue clearing and LSFM is useful for elucidating not only the intracerebral distribution but also the drug delivery pathways into the brain.


Asunto(s)
Encéfalo , Neuroimagen , Ratones , Animales , Encéfalo/diagnóstico por imagen
9.
Bioorg Med Chem Lett ; 79: 129082, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36414174

RESUMEN

Spinocerebellar ataxia type 31 is an autosomal dominant neurodegenerative disease caused by aberrant insertion of d(TGGAA)n into the intron shared by brain expressed, associated with Nedd4 and thymidine kinase 2 genes in chromosome 16. We reported that a naphthyridine dimer derivative with amidated linker structure (ND-amide) bound to GGA/GGA motifs in hairpin structures of d(TGGAA)n. The binding of naphthyridine dimer derivatives to the GGA/GGA motif was sensitive to the linker structures. The amidation of the linker in naphthyridine dimer improved the binding property to the GGA/GGA motif as compared with non-amidated naphthyridine dimer.


Asunto(s)
Repeticiones de Microsatélite , Naftiridinas , Humanos , Amidas/química , Amidas/farmacología , Repeticiones de Microsatélite/efectos de los fármacos , Naftiridinas/química , Naftiridinas/farmacología , Polímeros , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo
10.
Nucleic Acids Res ; 49(15): 8462-8470, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34358308

RESUMEN

Small-molecules interacting with particular RNAs and modulating their functions are vital tools for RNA-targeting drug discovery. Considering the substantial distribution of the internal loops involving two contiguous cytosines opposite to a single-nucleotide base (Y/CC; Y = C, U or A) within the biologically significant functional RNAs, developing small-molecule probes targeting Y/CC sites should provide profound insight into their functions and roles in biochemical processes. Herein, we report ANP77 as the small-molecule probe for sensing RNA internal loop of Y/CC motifs and molecules binding to the motifs. The Y/CC motifs interact with ANP77 via the formation of a 1:1 complex and quench the fluorescence of ANP77. The flanking sequence-dependent binding to C/CC and U/CC sites was assessed by fluorometric screening, provided the binding heat maps. The quenching phenomena of ANP77 fluorescence was confirmed with intrinsic potential drug target pre-miR-1908. Finally, the binding-dependent fluorescence quenching of ANP77 was utilized in the fluorescence indicator displacement assay to demonstrate the potential of ANP77 as an indicator by using the RNA-binding drugs, risdiplam and branaplam.


Asunto(s)
Colorantes Fluorescentes/química , ARN/química , Compuestos Azo/metabolismo , Citosina/química , Descubrimiento de Drogas , MicroARNs/química , Motivos de Nucleótidos , Pirimidinas/metabolismo , ARN/metabolismo
11.
Nucleic Acids Res ; 49(16): 9479-9495, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34358321

RESUMEN

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder caused by a limited expansion of CGG repeats in the FMR1 gene. Degeneration of neurons in FXTAS cell models can be triggered by accumulation of polyglycine protein (FMRpolyG), a by-product of translation initiated upstream to the repeats. Specific aims of our work included testing if naphthyridine-based molecules could (i) block FMRpolyG synthesis by binding to CGG repeats in RNA, (ii) reverse pathological alterations in affected cells and (iii) preserve the content of FMRP, translated from the same FMR1 mRNA. We demonstrate that cyclic mismatch binding ligand CMBL4c binds to RNA structure formed by CGG repeats and attenuates translation of FMRpolyG and formation of nuclear inclusions in cells transfected with vectors expressing RNA with expanded CGG repeats. Moreover, our results indicate that CMBL4c delivery can reduce FMRpolyG-mediated cytotoxicity and apoptosis. Importantly, its therapeutic potential is also observed once the inclusions are already formed. We also show that CMBL4c-driven FMRpolyG loss is accompanied by partial FMRP reduction. As complete loss of FMRP induces FXS in children, future experiments should aim at evaluation of CMBL4c therapeutic intervention in differentiated tissues, in which FMRpolyG translation inhibition might outweigh adverse effects related to FMRP depletion.


Asunto(s)
Ataxia/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Naftiridinas/farmacología , Temblor/genética , Expansión de Repetición de Trinucleótido/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ataxia/tratamiento farmacológico , Ataxia/patología , Proliferación Celular/efectos de los fármacos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/antagonistas & inhibidores , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/patología , Células HeLa , Humanos , Ligandos , Neuronas/efectos de los fármacos , Neuronas/patología , Péptidos/genética , Biosíntesis de Proteínas/efectos de los fármacos , Resonancia por Plasmón de Superficie , Temblor/tratamiento farmacológico , Temblor/patología , Expansión de Repetición de Trinucleótido/genética , Repeticiones de Trinucleótidos/efectos de los fármacos , Repeticiones de Trinucleótidos/genética
12.
Biochemistry ; 61(22): 2522-2530, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36250600

RESUMEN

The stable R-loop formed during transcription induces enzyme-mediated deamination of cytosine, and the uracil in the DNA produced activates the base excision repair (BER) pathway. DNA cleavage involved in the BER pathway is thought to be one of the possible causes of trinucleotide repeat instability. Here, we performed an in vitro assay to investigate the effect of a DNA-binding small molecule, naphthyridine carbamate dimer (NCD), on BER enzyme reactions. The gel electrophoretic mobility shift assay (EMSA) and thermal melting analysis revealed the binding of NCD to a 5'-XGG-3'/5'-XGG-3' triad (X = C or U or apurinic/apyrimidinic site), which is a mimic of a BER enzyme substrate. Polyacrylamide gel electrophoresis (PAGE) of the reaction products of these substrates with hSMUG1 and APE1 enzymes in the presence of NCD showed that NCD interfered with the repair reaction in the 5'-XGG-3'/5'-XGG-3' triad. These findings would broaden the potential of small molecules in modulating trinucleotide repeat instability.


Asunto(s)
Enfermedades no Transmisibles , Uracilo , Humanos , Uracilo/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Reparación del ADN , ADN/metabolismo
13.
Neurobiol Dis ; 163: 105604, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34968706

RESUMEN

Dentatorubral-pallidoluysian atrophy (DRPLA) is a devastating genetic disease presenting myoclonus, epilepsy, ataxia, and dementia. DRPLA is caused by the expansion of a CAG repeat in the ATN1 gene. Aggregation of the polyglutamine-expanded ATN1 protein causes neuro-degeneration of the dentatorubral and pallidoluysian systems. The expanded CAG repeats are unstable, and ongoing repeat expansions contribute to disease onset, progression, and severity. Inducing contractions of expanded repeats can be a means to treat DRPLA, for which no disease-modifying or curative therapies exist at present. Previously, we characterized a small molecule, naphthyridine-azaquinolone (NA), which binds to CAG slip-out structures and induces repeat contraction in Huntington's disease mice. Here, we demonstrate that long-term intracerebroventricular infusion of NA leads to repeat contraction, reductions in mutant ATN1 aggregation, and improved motor phenotype in a murine model of DRPLA. Furthermore, NA-induced contraction resulted in the modification of repeat-length-dependent dysregulation of gene expression profiles in DRPLA mice. Our study reveals the therapeutic potential of repeat contracting small molecules for repeat expansion disorders, such as DRPLA.


Asunto(s)
Destreza Motora/fisiología , Epilepsias Mioclónicas Progresivas/fisiopatología , Proteínas del Tejido Nervioso/genética , Repeticiones de Trinucleótidos , Animales , Modelos Animales de Enfermedad , Ratones , Destreza Motora/efectos de los fármacos , Epilepsias Mioclónicas Progresivas/genética , Naftiridinas/farmacología , Fenotipo , Agregado de Proteínas/efectos de los fármacos , Quinolonas/farmacología
14.
J Org Chem ; 87(1): 340-350, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34937340

RESUMEN

Small molecules targeting DNA regions with structural fluctuation are an important class of molecule as chemical probes for studying the role of these structures in biological systems and the development of neurological disorders. The molecule ANP77 we described here, where a three-atom linker connects two 2-amino-1,8-naphthyridines at the C7 position, was found to form stacked structure with protonation of naphthyridine at low pH, and bound to the internal loop consisting of C/CC and T/CC in double-stranded DNA with affinities of 4.8 and 34.4 nM, respectively. Mass spectrometry and isothermal titration calorimetry analyses determined the stoichiometry for the binding as 1:1, and chemical footprinting with permanganate and NMR structural analysis revealed that the T in the T/CC was forced to flip out toward an extrahelical position upon ANP77 binding. Protonated stacked ANP77 interacted with two adjacent cytosines through hydrogen bonding and occupied the position in the duplex by flipping out the C or T opposite CC. Finally, this study demonstrated the potential of ANP77 for binding to the sequences of biological significance with the TG(T/C)CC repeat of the PIG3 promoter and the telomere repeat CCCTAA.


Asunto(s)
ADN , Naftiridinas , Citosina , Enlace de Hidrógeno
15.
Artículo en Inglés | MEDLINE | ID: mdl-35013029

RESUMEN

The instability of repeat sequences in the human genome results in the onset of many neurological diseases if the repeats expand above a certain threshold. The transcripts containing long repeats sequester RNA binding proteins. The mechanism of repeat instability involves metastable slip-out hairpin DNA structures. Synthetic organic chemists have focused on the development of small organic molecules targeting repeat DNA and RNA sequences to treat neurological diseases with repeat-binding molecules. Our laboratory has studied a series of small molecules binding to mismatched base pairs and found molecules capable of binding CAG repeat DNA, which causes Huntington's disease upon expansion, CUG repeat RNA, a typical toxic RNA causing myotonic dystrophy type 1, and UGGAA repeat RNA causing spinocerebellar ataxia type 31. These molecules exhibited significant beneficial effects on disease models in vivo, suggesting the possibilities for small molecules as drugs for treating these neurological diseases.


Asunto(s)
Enfermedades del Sistema Nervioso , ADN , Humanos , Distrofia Miotónica/genética , ARN , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido
16.
Biochemistry ; 60(4): 245-249, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33476116

RESUMEN

MicroRNAs are potential targets for drug development. Small molecules that can inhibit or promote a specific miRNA's biogenesis would be useful for regulating its target genes. Various types of small molecules have been investigated so far for their potential application in modulating miRNA biogenesis. They bind to the target primary or precursor miRNAs and inhibit the processing of these precursors by Drosha or Dicer. However, the binding site that effectively interferes with the Dicer cleavage reaction is still undetermined. Here we report that our designed small molecule restricted naphthyridine dimer (RND) binds to the hairpin loop of a hairpin RNA and induces its dimerization. This study shows that the binding of the RND to the hairpin loop was not effective in interfering with the Dicer cleavage reaction, but dimerization of the hairpin RNA by RND binding effectively interfered with the Dicer cleavage reaction.


Asunto(s)
ARN Helicasas DEAD-box/química , MicroARNs/química , Modelos Químicos , Conformación de Ácido Nucleico , Ribonucleasa III/química , Humanos
17.
Bioorg Med Chem ; 36: 116070, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33773376

RESUMEN

RNA is an emerging target of next-generation drug development. Recently, new small molecules targeting RNAs were discovered by several pharmaceutical companies. Methods have been reported to identify small molecules targeting a specific RNA sequence and structural motif, however, because of diverse sequence and structural motifs potentially present in the druggable functional RNAs, large sets of structure-activity relationships (SARs) information of small molecule - RNA interactions will be required for the acceleration and efficient startup of the discovery programs toward unprecedented RNA targets. Here we describe our iterative RNA selection and compounds screening to accumulate rich information about small molecules - RNA interaction. The RNAs that selectively bind to the initial molecular target, compound 1 from our in-house chemical library (JT-library), was isolated using in vitro selection technique from a hairpin-structured RNA library mimicking precursor microRNA (pre-miRNA). Then, we engineered pre-let-7f-2 to create its mutant that can bind to compound 1 by embedding the in vitro selected RNA motif for compound 1 in the hairpin loop region. The obtained mutant pre-let-7f-2-loop-mt was used as a target for screening 316 analogs of compound 1. A surface plasmon resonance (SPR) -based screening was performed against pre-let-7f-2-loop-mt-immobilized sensor surface and we obtained four compounds that can bind to the RNA. Among these four compounds, three compounds showed higher affinity to pre-let-7f-2-loop-mt than the parental compound 1, which suggests the feasibility of our strategy for gathering the SAR information on small molecule - RNA interactions. We demonstrated only one cycle of RNA selection and compounds screening in the present study, but can continue this cycle with the selected molecule to gain new RNAs and even new RNA motifs and gather much SAR information with improved accuracy.


Asunto(s)
Descubrimiento de Drogas , ARN/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Estructura Molecular , ARN/química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
18.
J Chem Phys ; 155(4): 044110, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34340364

RESUMEN

A multi-level layered elongation method was developed for efficiently analyzing the electronic states of local structures in large bio/nano-systems at the full ab initio level of theory. The original elongation method developed during the last three decades in our group has focused on the system in one direction from one terminal to the other terminal to sequentially construct the electronic states of a polymer, called a theoretical synthesis of polymers. In this study, an important region termed the central (C) part is targeted in a large polymer and the remainder are terminal (T) parts. The electronic structures along with polymer elongation are calculated repeatedly from both end T parts to the C central part at the same time. The important C part is treated with large basis sets (high level) and the other regions are treated with small basis sets (low level) in the ab initio theoretical framework. The electronic structures besides the C part can be reused for other systems with different structures at the C part, which renders the method computationally efficient. This multi-level layered elongation method was applied to the investigation on DNA single bulge recognition of small molecules (ligands). The reliability and validity of our approach were examined in comparison with the results obtained by direct calculations using a conventional quantum chemical method for the entire system. Furthermore, stabilization energies by the formation of the complex of bulge DNA and a ligand were estimated with basis set superposition error corrections incorporated into the elongation method.


Asunto(s)
ADN/química , Conformación de Ácido Nucleico , Química Computacional , Descubrimiento de Drogas , Ligandos , Teoría Cuántica
19.
Nucleic Acids Res ; 47(20): 10906-10913, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31566242

RESUMEN

The trinucleotide repeat expansion disorders (TREDs) constitute of a group of >40 hereditary neurodegenerative human diseases associated with abnormal expansion of repeated sequences, such as CAG repeats. The pathogenic factor is a transcribed RNA or protein whose function in the cell is compromised. The disorders are progressive and incurable. Consequently, many ongoing studies are oriented at developing therapies. We have analyzed crystal structures of RNA containing CAG repeats in complex with synthetic cyclic mismatch-binding ligands (CMBLs). The models show well-defined interactions between the molecules in which the CMBLs mimic nucleobases as they form pseudo-canonical base pairs with adenosine residues and engage in extensive stacking interactions with neighboring nucleotides. The binding of ligands is associated with major structural changes of the CAG repeats, which is consistent with results of biochemical studies. The results constitute an early characterization of the first lead compounds in the search for therapy against TREDs. The crystallographic data indicate how the compounds could be further refined in future biomedical studies.


Asunto(s)
ARN/genética , Expansión de Repetición de Trinucleótido/genética , Adenosina/metabolismo , Secuencia de Bases , Ligandos , Conformación de Ácido Nucleico , Desnaturalización de Ácido Nucleico , ARN/química , Solventes , Temperatura , Rayos Ultravioleta
20.
Biochemistry ; 59(29): 2679-2683, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32628834

RESUMEN

The methylation of cytosine in the full mutation of the expanded CGG repeat and subsequent deamination to thymine could be a measure of repeat instability. We report the synthesis of NCD-Bpy, which binds to the TGG/CGG site in the repeat hairpin. NCD-Bpy forces the thymine in the TGG/CGG site to flip out from the π-stack, recruits osmium tetroxide in the vicinity of the flipped-out T, and oxidizes the T. The piperidine-induced cleavage band successfully determined the position of the T in the expanded CGG repeat.


Asunto(s)
2,2'-Dipiridil/química , 5-Metilcitosina/análisis , Naftiridinas/química , Timina/análisis , Repeticiones de Trinucleótidos , 2,2'-Dipiridil/síntesis química , Desaminación , Metilación , Naftiridinas/síntesis química , Expansión de Repetición de Trinucleótido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA