Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Small ; 20(27): e2400779, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38546187

RESUMEN

The development of an efficient electrocatalyst for HMF oxidation to FDCA has been in the early stages. Herein, the NiNPs/GO-Ni-foam is fabricated as an electrocatalyst for FDCA production. However, the electrocatalytic performance of the untreated NiNPs/GO-Ni-foam is observed with moderate Faradaic efficiency (FE) (73.0%) and FDCA yield (80.2%). By electrochemically treating the NiNPs/GO-Ni-foam in an alkaline solution with positive potential at different treatment durations, the degree of NiOOH on metal surfaces is changed. The distinctive electrocatalytic activity obtained when using the different NiOOH degrees allows to understand the crucial impact of NiOOH species in HMF electrooxidation. Enhancing the portion of the NiOOH phase on the electrocatalyst surface improves electrocatalytic activity in terms of FE and FDCA yield up to 94.8±4.8% and 86.9±4.1%, respectively. Interestingly, as long as the NiOOH portion on the electrocatalyst surface is preserved or regenerated, the electrocatalyst performance can be intact even after several catalytic cycles. The theoretical study via density functional theory (DFT) also agrees with the experimental observations and confirms that the NiOOH phase facilitates the electrochemical transformation of HMF to FDCA through the HMFCA pathway, and the potential limiting step of the overall reaction is the oxidation of FFCA to FDCA.

2.
Small ; : e2403661, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994824

RESUMEN

Efficient conversion of biomass wastes into valuable chemicals has been regarded as a sustainable approach for green and circular economy. Herein, a highly efficient catalytic conversion of glycerol (Gly) into glycerol carbonate (GlyC) by carbonylation with the commercially available urea is presented using low-cost transition metal single atoms supported on zinc oxide quantum dots (M1-ZnO QDs) as a catalyst without using any solvent. A facile one-step wet chemical synthesis allows various types of metal single atoms to simultaneously dope and introduce Lewis-acid defects in the ZnO QD structure. It is found that doping with a trace amount of isolated metal atoms greatly boosts the catalytic activity with Gly conversion of 90.7%, GlyC selectivity of 100.0%, and GlyC yield of 90.6%. Congruential results from both Density Functional Theory (DFT) and in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (in situ DRIFTS) studies reveal that the superior catalytic performance can be attributed to the enriched Lewis acid sites that endow optimal adsorption, formation of the intermediate for coupling between urea and Gly, and desorption of GlyC. Moreover, the tiny size of ZnO QDs efficiently promotes the accessibility of these active sites to the reactants.

3.
Phys Chem Chem Phys ; 25(42): 28657-28668, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37849315

RESUMEN

The urgent demand for chemical safety necessitates the real-time detection of carbon monoxide (CO), a highly toxic gas. MXene, a 2D material, has shown potential for gas sensing applications (e.g., NH3, NO, SO2, CO2) due to its high surface accessibility, electrical conductivity, stability, and flexibility in surface functionalization. However, the pristine MXene generally exhibits poor interaction with CO; still, transition metal decoration can strengthen the interaction between CO and MXene. This study presents a high-throughput screening of 450 combinations of transition-metal (TM) decorated MXene (TM@MXene) for CO sensing applications using an integrated active learning (AL) and density functional theory (DFT) screening pipeline. Our AL pipeline, adopting a crystal graph convolutional neural network (CGCNN) as a surrogate model, successfully accelerates the screening of CO sensor candidates with minimal computational resources. This study identifies Sc@Zr3C2O2 and Y@Zr3C2O2 as the optimal TM@MXene candidates with promising CO sensing performance regarding the screening criteria of recovery time, surface stability, charge transfer, and sensitivity to CO. The proposed AL framework can be extended for property finetuning in the combinatorial chemical space.

4.
Small ; 18(51): e2204767, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36328759

RESUMEN

The discoveries of 2D nanomaterials have made huge impacts on the scientific community. Their unique properties unlock new technologies and bring significant advances to diverse applications. Herein, an unprecedented 2D-stacked material consisting of copper (Cu) on nitro-oxygenated carbon is disclosed. Unlike any known 2D stacked structures that are usually constructed by stacking of separate 2D layers, this material forms a continuously folded 2D-stacked structure. Interestingly, advanced characterizations indicate that Cu atoms inside the structure are in an atomically-dispersed form with extraordinarily high Cu loading up to 15.9 ± 1.2 wt.%, which is among the highest reported metal loading for single-atom catalysts on 2D supports. Facile exfoliation results in thin 2D nanosheets that maximize the exposure of the unique active sites (two neighboring Cu single atoms), leading to impressive catalytic performance, as demonstrated in the electrochemical oxygen reduction reaction.


Asunto(s)
Cobre , Nanoestructuras , Humanos , Carbono , Catálisis , Hipoxia
5.
Phys Chem Chem Phys ; 24(21): 12909-12921, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35583239

RESUMEN

Single-atom catalysts (SACs) obtained by doping transition metal (TM) atoms into stable monolayers are a promising way to improve the CO2 reduction reaction (CRR) performance. In this work, we theoretically investigated the effect of ligand atoms around the doped TM (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) in ZnO and ZnS for promoting the CRR performance. We found that the ligand atoms around the TM can influence its oxidation state and the electronic properties of the SACs, thus affecting their CRR activity. Due to the smaller charge transfer between the TM and substrate for TM-ZnS compared to TM-ZnO, the TM binding is weaker for the former. In addition, the more negatively charged oxygen ligand atoms in TM-ZnO interact with reaction intermediates, resulting in CRR products with less electron transfer. Pristine ZnS and ZnO monolayers can produce HCOOH but require a high limiting potential (UL) of about -1.2 V. Doping with TMs can reduce UL compared to the pristine surface. At the same time, the ligand can alter the preferred CRR pathway and product selectivity. We found that Mn-ZnS is selective to the CH4 product with a UL of only -0.29 V, which is a nearly 1 V improvement in the UL compared to ZnS.

6.
Microporous Mesoporous Mater ; 343: 112187, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35999991

RESUMEN

The development of fast and non-invasive techniques to detect SARS-CoV-2 virus at the early stage of the infection would be highly desirable to control the COVID-19 outbreak. Metal-organic frameworks (MOFs) are porous materials with uniform porous structures and tunable pore surfaces, which would be essential for the selective sensing of the specific COVID-19 biomarkers. However, the use of MOFs materials to detect COVID-19 biomarkers has not been demonstrated so far. In this work, for the first time, we employed the density functional theory calculations to investigate the specific interactions of MOFs and the targeted biomarkers, in which the interactions were confirmed by experiment. The five dominant COVID-19 biomarkers and common exhaled gases are comparatively studied by exposing them to MOFs, namely MIL-100(Al) and MIL-100(Fe). The adsorption mechanism, binding site, adsorption energy, recovery time, charge transfer, sensing response, and electronic structures are systematically investigated. We found that MIL-100(Fe) has a higher sensing performance than MIL-100(Al) in terms of sensitivity and selectivity. MIL-100(Fe) shows sensitive to COVID-19 biomarkers, namely 2-methylpent-2-enal and 2,4-octadiene with high sensing responses as 7.44 x 105 and 9 x 107 which are exceptionally higher than those of the common gases which are less than 6. The calculated recovery times of 0.19 and 1.84 x 10-4 s are short enough to be a resuable sensor. An experimental study also showed that the MIL-100(Fe) provides a sensitivity toward 2-methylpent-2-enal. In conclusion, we suggest that MIL-100(Fe) could be used as a potential sensor for the exhaled breath analysis. We hope that our research can aid in the development of a biosensor for quick and easy COVID-19 biomarker detection in order to control the current pandemic.

7.
Inorg Chem ; 60(9): 6147-6151, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33667065

RESUMEN

Novel constrained Schiff-base ligands (inden) were developed based on the well-known salen ligands. Chromium complexes supported by the constrained inden ligands were successfully synthesized and used as catalysts for the synthesis of cyclic carbonates from epoxides and carbon dioxide (CO2). The catalyst having tert-butyl (tBu) groups as substituents in combination with tetrabutylammonium bromide (TBAB) as a cocatalyst exhibited very high catalytic activity with a turnover frequency of up to 14800 h-1 for the conversion of CO2 and propylene oxide into propylene carbonate exclusively at 100 °C and 300 psi of CO2 under solvent-free conditions. The catalyst was found to be highly active for various epoxide substrates to produce terminal cyclic carbonates in 100% selectivity.

8.
Molecules ; 26(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562757

RESUMEN

The effect of microsolvation on excited-state proton transfer (ESPT) reaction of 3-hydroxyflavone (3HF) and its inclusion complex with γ-cyclodextrin (γ-CD) was studied using computational approaches. From molecular dynamics simulations, two possible inclusion complexes formed by the chromone ring (C-ring, Form I) and the phenyl ring (P-ring, Form II) of 3HF insertion to γ-CD were observed. Form II is likely more stable because of lower fluctuation of 3HF inside the hydrophobic cavity and lower water accessibility to the encapsulated 3HF. Next, the conformation analysis of these models in the ground (S0) and the first excited (S1) states was carried out by density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations, respectively, to reveal the photophysical properties of 3HF influenced by the γ-CD. The results show that the intermolecular hydrogen bonding (interHB) between 3HF and γ-CD, and intramolecular hydrogen bonding (intraHB) within 3HF are strengthened in the S1 state confirmed by the shorter interHB and intraHB distances and the red-shift of O-H vibrational modes involving in the ESPT process. The simulated absorption and emission spectra are in good agreement with the experimental data. Significantly, in the S1 state, the keto form of 3HF is stabilized by γ-CD, explaining the increased quantum yield of keto emission of 3HF when complexing with γ-CD in the experiment. In the other word, ESPT of 3HF is more favorable in the γ-CD hydrophobic cavity than in aqueous solution.


Asunto(s)
Flavonoides/química , Protones , Solventes/química , Agua/química , gamma-Ciclodextrinas/química , Modelos Moleculares , Conformación Molecular
9.
Inorg Chem ; 57(16): 10170-10179, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30063131

RESUMEN

Polymerizations of biodegradable lactide and lactones have been the subjects of intense research during the past decade. They can be polymerized/copolymerized effectively by several catalyst systems. With bis(phenolate)-amine aluminum complex, we have shown for the first time that lactide monomer can deactivate the aluminum complex during the ongoing polymerization of ε-caprolactone to a complete stop. After hours of dormant state, the aluminum complex can be reactivated again by heating at 100 °C without the addition of any external chemicals still giving polymer with narrow dispersity. Studies using NMR, in situ FTIR, and single-crystal X-ray crystallography indicated that the coordination of the carbonyl group in lactyl unit was responsible for the unusual behavior of lactide. In addition, the unusual methyl-migration from methyl lactate ligand to the amine side chain of the aluminum complex was observed through intermolecular nucleophilic-attack mechanism.

10.
Phys Chem Chem Phys ; 20(32): 21194-21203, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-30083668

RESUMEN

We used density functional theory (DFT) to investigate hydrogen adsorption and diffusion on platinum-decorated carbon nanocones (Pt-CNCs). The curvature presented in the conical section of CNC materials affects the Pt binding stability. The role of Pt atoms as an active catalyst for H2 adsorption and dissociation has been investigated in perfect Pt-4CNC and defect Pt-v4CNC systems. Then, the spillover mechanism of dissociated hydrogen atoms in Pt-v4CNC is explored via two reaction steps: (i) H-migration from Pt to carbon atoms and (ii) H-diffusion via the C-C route throughout the CNC surface. Our results show that the presence of the hydrogen atom on the Pt catalyst can efficiently induce the H-diffusion process through the C-C surface, and the Pt-H bond significantly facilitates the H-migration from C-H bonds near to the active Pt catalyst to the adjacent carbon atom with an energy barrier <0.5 eV under ambient conditions. Altogether, the theoretical results support the concept of the spillover mechanism as a key process for enhancing the hydrogen storage capacity of metal-decorated CNCs. These results improve our understanding about the hydrogen spillover mechanism and the catalytic reactions which are very important for the development of highly efficient hydrogen storage materials.

11.
Angew Chem Int Ed Engl ; 55(45): 13979-13984, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27709769

RESUMEN

An approach to transforming amorphous organic networks into crystalline covalent organic frameworks (COFs) with retention of the colloidal nanosize and uniform morphology is presented. Specifically, Fe3 O4 nanoclusters are encapsulated by a disordering polyimine network via the Schiff-base reaction. The formed imine bonds could be reconstructed under thermodynamic control to reform the polyimine networks into imine-linked COFs in situ. Such a core-shell microsphere exhibits the uniform size and spherical shape, controllable COF shell thickness, accessible surface modification, and improved solution dispersibility as well as maintenance of high surface area, periodic micropores, and superior magnetic responsiveness. Additionally, the photothermal conversion effect is demonstrated for the first time on the nanoCOF layers upon exposure to near infrared light, providing convincing evidence for potential use in phototherapy.

12.
Beilstein J Org Chem ; 11: 2306-2317, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26734079

RESUMEN

Cyclodextrins (CDs) have been extensively utilized as host molecules to enhance the solubility, stability and bioavailability of hydrophobic drug molecules through the formation of inclusion complexes. It was previously reported that the use of co-solvents in such studies may result in ternary (host:guest:co-solvent) complex formation. The objective of this work was to investigate the effect of ethanol as a co-solvent on the inclusion complex formation between α-mangostin (α-MGS) and ß-CD, using both experimental and theoretical studies. Experimental phase-solubility studies were carried out in order to assess complex formation, with the mechanism of association being probed using a mathematical model. It was found that α-MGS was poorly soluble at low ethanol concentrations (0-10% v/v), but higher concentrations (10-40% v/v) resulted in better α-MGS solubility at all ß-CD concentrations studied (0-10 mM). From the equilibrium constant calculation, the inclusion complex is still a binary complex (1:1), even in the presence of ethanol. The results from our theoretical study confirm that the binding mode is binary complex and the presence of ethanol as co-solvent enhances the solubility of α-MGS with some effects on the binding affinity with ß-CD, depending on the concentration employed.

13.
Chemphyschem ; 15(17): 3809-18, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25270592

RESUMEN

In an attempt to shed light on how the addition of a benzothiadiazole (BTD) moiety influences the properties of dyes, a series of newly designed triphenylamine-based sensitizers incorporating a BTD unit as an additional electron-withdrawing group in a specific donor-acceptor-π-acceptor architecture has been investigated. We found that different positions of the BTD unit provided significantly different responses for light absorption. Among these, it was established that the further the BTD unit is away from the donor part, the broader the absorption spectra, which is an observation that can be applied to improve light-harvesting ability. However, when the BTD unit is connected to the anchoring group a faster, unfavorable charge recombination takes place; therefore, a thiophene unit was inserted between these two acceptors, providing redshifted absorption spectra as well as blocking unfavorable charge recombination. The results of our calculations provide valuable information and illustrate the potential benefits of using computation-aided sensitizer design prior to further experimental synthesis.

14.
Environ Sci Technol ; 48(12): 7101-10, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24856812

RESUMEN

The adsorption of nitrous oxide (N2O) on metal-porphyrins (metal: Ti, Cr, Fe, Co, Ni, Cu, or Zn) has been theoretically investigated using density functional theory with the M06L functional to explore their use as potential catalysts for the direct decomposition of N2O. Among these metal-porphyrins, Ti-porphyrin is the most active for N2O adsorption in the triplet ground state with the strongest adsorption energy (-13.32 kcal/mol). Ti-porphyrin was then assessed for the direct decomposition of N2O. For the overall reaction mechanism of three N2O molecules on Ti-porphyrin, two plausible catalytic cycles are proposed. Cycle 1 involves the consecutive decomposition of the first two N2O molecules, while cycle 2 is the decomposition of the third N2O molecule. For cycle 1, the activation energies of the first and second N2O decompositions are computed to be 3.77 and 49.99 kcal/mol, respectively. The activation energy for the third N2O decomposition in cycle 2 is 47.79 kcal/mol, which is slightly lower than that of the second activation energy of the first cycle. O2 molecules are released in cycles 1 and 2 as the products of the reaction, which requires endothermic energies of 102.96 and 3.63 kcal/mol, respectively. Therefore, the O2 desorption is mainly released in catalytic cycle 2 of a TiO3-porphyrin intermediate catalyst. In conclusion, regarding the O2 desorption step for the direct decomposition of N2O, the findings would be very useful to guide the search for potential N2O decomposition catalysts in new directions.


Asunto(s)
Metales/química , Modelos Teóricos , Óxido Nitroso/química , Porfirinas/química , Adsorción , Catálisis , Oxígeno/química , Termodinámica , Titanio/química , Zeolitas/química
15.
ACS Appl Mater Interfaces ; 16(26): 33590-33600, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38899403

RESUMEN

Metal single-site catalysts have recently played an essential role in catalysis due to their enhanced activity, selectivity, and precise reaction control compared to those of conventional metal cluster catalysts. However, the rational design and catalytic application of metal single-site catalysts are still in the early stages of development. In this contribution, we report the rational design of Fe single sites incorporated in a hierarchical ZSM-5 via atomic layer deposition (ALD). The designer catalysts demonstrated highly dispersed Fe species, predominantly stabilized by oxygen atoms in the zeolite framework at terminal, isolated, and vicinal silanol groups within the micropores and external surfaces of the zeolite. The successful incorporation of highly thermally stable and uniform Fe single sites into hierarchical zeolite through ALD represents a significant advancement in few-walled carbon nanotube production. The inner and outer diameters of produced CNTs are approximately 4.4 ± 2.4 and 8.6 ± 1.8 nm, respectively, notably smaller than those produced via traditional impregnated catalysts. This example emphasizes the concept of rational design of a single Fe site dispersed on a hierarchical ZSM-5 surface, which is anticipated to be a promising catalyst for advancing catalytic applications.

16.
Mater Horiz ; 11(8): 1964-1974, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38348699

RESUMEN

The rational design of heterostructured nanocrystals (HNCs) is of great significance for developing highly efficient hydrogen evolution reaction (HER) electrocatalysts. However, a significant challenge still lies in realizing the controllable synthesis of desired HNCs directly onto a support and exploring their structure-activity-dependent HER performance. Herein, we reported various controllable Pd7@Ptx core-shell HNCs with optimal hybrid structures via a photochemical deposition strategy. The growth patterns of a Pt shell can be finely controlled by adjusting the growth kinetics, resulting in a varying deposition rate. In particular, the as-prepared Pd7@Pt3 HNCs with a Pt shell in the Stranski-Krastanov mode showed the best performances over a wide pH range media, delivering low overpotentials of 33, 18 and 49 mV, resulting in a catalytic current density of 10 mA cm-2 at a low effective catalyst loading of 0.021 mg cm-2. The resulting Tafel slopes were 23.1, 52.6 and 42.7 mV dec-1 in 0.5 M H2SO4, 1.0 M phosphate-buffered saline (PBS) and 1.0 M KOH electrolyte, respectively. It was found that the increased fraction of unsaturated coordination of Pt islands in the resultant material is the key to the enhanced and robust HER activity, which has been confirmed through density functional theory (DFT) calculations. This strategy could be extended to the rational design and synthesis of other heterostructured catalysts for energy conversion and storage.

17.
ACS Appl Mater Interfaces ; 16(8): 10227-10237, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38367256

RESUMEN

Single-atom catalysts (SACs) possess the potential to involve the merits of both homogeneous and heterogeneous catalysts altogether and thus have gained considerable attention. However, the large-scale synthesis of SACs with rich isolate-metal sites by simple and low-cost strategies has remained challenging. In this work, we report a facile one-step pyrolysis that automatically produces SACs with high metal loading (5.2-15.9 wt %) supported on two-dimensional nitro-oxygenated carbon (M1-2D-NOC) without using any solvents and sacrificial templates. The method is also generic to various transition metals and can be scaled up to several grams based on the capacity of the containers and furnaces. The high density of active sites with N/O coordination geometry endows them with impressive catalytic activities and stability, as demonstrated in the oxygen reduction reaction (ORR). For example, Fe1-2D-NOC exhibits an onset potential of 0.985 V vs RHE, a half-wave potential of 0.826 V, and a Tafel slope of -40.860 mV/dec. Combining the theoretical and experimental studies, the high ORR activity could be attributed its unique FeO-N3O structure, which facilitates effective charge transfer between the surface and the intermediates along the reaction, and uniform dispersion of this active site on thin 2D nanocarbon supports that maximize the exposure to the reactants.

18.
Chempluschem ; 88(11): e202300306, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37787416

RESUMEN

In this work, we studied the reaction mechanisms for CO2 reduction reaction (CRR) on the iron-doped graphene and its coordinating sulfur (S) and nitrogen (N) variants, FeNn S4-n (n=1-4), using density functional theory calculations. Our results revealed that the electronic property and catalytic reactivity of the surfaces can be tuned by varying the N and S atoms ratio. The CRR activities of the mixed surfaces, FeN3 S1 , FeN2 S2 , and FeN1 S3 , were better than FeN4 and FeS4 , where the absolute value of the limiting potential of the mixed surface decreased by 0.3 V. Considering the stability, we suggest FeN3 S surface to be favorable for CRR. For the bare surfaces, we found a positive linear correlation between the magnetic moment and the charge of Fe metal. For these surfaces, the reduction of CO (*CO+(H+ +e- )→*CHO) was important in deciding the limiting potential. We found that the adsorption energy of CO displayed a volcano relationship with the magnetic moment of the Fe atom. The study showed that the change of local coordinating structure around the Fe atom could modify the electronic and magnetic properties of the active Fe center and improve the CRR activity performance.

19.
Dalton Trans ; 52(42): 15377-15383, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37615038

RESUMEN

ZIF-67 is a representative type of metal-organic framework (MOF) developed for the oxygen reduction reaction (ORR) owing to its robust structure in alkaline electrolytes and the presence of the redox-active Co2+ species in the structure. In this work, the improvement of the ORR electrolytic performance of ZIF-67 in its pure phase by optimization of its crystal morphology and crystal facets has been presented. ZIF-67 nanocubes exhibit higher ORR activity than their bulk crystals. The enriched (100) facet in the nanocube crystals provides a higher number of exposed Co2+ sites resulting in improved ORR performances. Moreover, DFT study suggests a distinguished mechanism in the (100) facet highlighting the importance of crystal facets in electrochemical performances.

20.
ACS Appl Mater Interfaces ; 15(10): 12936-12945, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36746619

RESUMEN

The flexible tuning ability of dual-atom catalysts (DACs) makes them an ideal system for a wide range of electrochemical applications. However, the large design space of DACs and the complexity in the binding motif of electrochemical intermediates hinder the efficient determination of DAC combinations for desirable catalytic properties. A crystal graph convolutional neural network (CGCNN) was adopted for DACs to accelerate the high-throughput screening of hydrogen evolution reaction (HER) catalysts. From a pool of 435 dual-atom combinations in N-doped graphene (N6Gr), we screened out two high-performance HER catalysts (AuCo@N6Gr and NiNi@N6Gr) with excellent HER, electronic conductivity, and stability using the combination of CGCNN and density functional theory (DFT). Furthermore, comprehensive DFT studies were conducted on these two catalysts to confirm their outstanding reaction kinetics and to understand the cooperative effect between the metal pair for HER. To obtain ideal hydrogen binding in AuCo, the inert Au weakens the strong hydrogen binding of Co, while for NiNi, the two weakly binding Ni cooperate. The present protocol was able to select the two catalysts with different physical origins for HER and can be applied to other DAC catalysts, which should hasten catalyst discovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA