Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2315348121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38701117

RESUMEN

Ovarian cancer is an aggressive gynecological tumor characterized by a high relapse rate and chemoresistance. Ovarian cancer exhibits the cancer hallmark of elevated glycolysis, yet effective strategies targeting cancer cell metabolic reprogramming to overcome therapeutic resistance in ovarian cancer remain elusive. Here, we revealed that epigenetic silencing of Otubain 2 (OTUB2) is a driving force for mitochondrial metabolic reprogramming in ovarian cancer, which promotes tumorigenesis and chemoresistance. Mechanistically, OTUB2 silencing destabilizes sorting nexin 29 pseudogene 2 (SNX29P2), which subsequently prevents hypoxia-inducible factor-1 alpha (HIF-1α) from von Hippel-Lindau tumor suppressor-mediated degradation. Elevated HIF-1α activates the transcription of carbonic anhydrase 9 (CA9) and drives ovarian cancer progression and chemoresistance by promoting glycolysis. Importantly, pharmacological inhibition of CA9 substantially suppressed tumor growth and synergized with carboplatin in the treatment of OTUB2-silenced ovarian cancer. Thus, our study highlights the pivotal role of OTUB2/SNX29P2 in suppressing ovarian cancer development and proposes that targeting CA9-mediated glycolysis is an encouraging strategy for the treatment of ovarian cancer.


Asunto(s)
Anhidrasa Carbónica IX , Silenciador del Gen , Mitocondrias , Neoplasias Ováricas , Tioléster Hidrolasas , Animales , Femenino , Humanos , Ratones , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Anhidrasa Carbónica IX/metabolismo , Anhidrasa Carbónica IX/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Reprogramación Metabólica , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/tratamiento farmacológico , Tioléster Hidrolasas/genética
2.
Mol Ther ; 31(2): 552-568, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36245126

RESUMEN

Inducing cancer cell apoptosis through cytotoxic reagents is the main therapeutic strategy for diverse cancer types. However, several antiapoptotic factors impede curative cancer therapy by driving cancer cells to resist cytotoxic agent-induced apoptosis, thus leading to refractoriness and relapse. To define critical antiapoptotic factors that contribute to chemoresistance in esophageal squamous cell carcinoma (ESCC), we generated two pairs of parental and apoptosis-resistant cell models through cisplatin (DDP) induction and then performed whole-transcriptome sequencing. We identified the long noncoding RNA (lncRNA) histocompatibility leukocyte antigen complex P5 (HCP5) as the chief culprit for chemoresistance. Mechanistically, HCP5 interacts with UTP3 small subunit processome component (UTP3) and prevents UTP3 degradation from E3 ligase tripartite motif containing 29 (TRIM29)-mediated ubiquitination. UTP3 then recruits c-Myc to activate vesicle-associated membrane protein 3 (VAMP3) expression. Activated VAMP3 suppresses caspase-dependent apoptosis and eventually leads to chemoresistance. Accordingly, the expression level of the HCP5/UTP3/c-Myc/VAMP3 axis in chemoresistant patients is significantly higher than that in chemosensitive patients. Thus, our study demonstrated that the HCP5/UTP3/c-Myc/VAMP3 axis plays an important role in the inhibition of cancer cell apoptosis and that HCP5 may be a promising chemosensitivity target for cancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs , ARN Largo no Codificante , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Recurrencia Local de Neoplasia/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción/genética , Ubiquitinación , Proteína 3 de Membrana Asociada a Vesículas/genética , Proteína 3 de Membrana Asociada a Vesículas/metabolismo
3.
Oncogene ; 43(6): 420-433, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38092960

RESUMEN

Dysregulated expression of long-stranded non-coding RNAs is strongly associated with carcinogenesis. However, the precise mechanisms underlying their involvement in ovarian cancer pathogenesis remain poorly defined. Here, we found that lncRNA RUNX1-IT1 plays a crucial role in the progression of ovarian cancer. Patients with high RUNX1-IT1 expression had shorter survival and poorer outcomes. Notably, knockdown of RUNX1-IT1 suppressed the proliferation, migration and invasion of ovarian cancer cells in vitro, and reduced the formation of peritoneum metastasis in vivo. Mechanistically, RUNX1-IT1 bound to HDAC1, the core component of the NuRD complex, and STAT1, acting as a molecular scaffold of the STAT1 and NuRD complex to regulate intracellular reactive oxygen homeostasis by altering the histone modification status of downstream targets including GPX1. Consequently, RUNX1-IT1 activated NF-κB signaling and altered the biology of ovarian cancer cells. In conclusion, our findings demonstrate that RUNX1-IT1 promotes ovarian malignancy and suggest that targeting RUNX1-IT1 represents a promising therapeutic strategy for ovarian cancer treatment.


Asunto(s)
Neoplasias Ováricas , ARN Largo no Codificante , Humanos , Femenino , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Histona Desacetilasas/genética , ARN Largo no Codificante/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo
4.
Front Med ; 17(5): 924-938, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37434064

RESUMEN

Long noncoding RNAs (lncRNAs) play a crucial regulatory role in the development and progression of multiple cancers. However, the potential mechanism by which lncRNAs affect the recurrence and metastasis of ovarian cancer remains unclear. In the current study, the lncRNA LOC646029 was markedly downregulated in metastatic ovarian tumors compared with primary tumors. Gain- and loss-of-function assays demonstrated that LOC646029 inhibits the proliferation, invasiveness, and metastasis of ovarian cancer cells in vivo and in vitro. Moreover, the downregulation of LOC646029 in metastatic ovarian tumors was strongly correlated with poor prognosis. Mechanistically, LOC646029 served as a miR-627-3p sponge to promote the expression of Sprouty-related EVH1 domain-containing protein 1, which is necessary for suppressing tumor metastasis and inhibiting KRAS signaling. Collectively, our results demonstrated that LOC646029 is involved in the progression and metastasis of ovarian cancer, which may be a potential prognostic biomarker.


Asunto(s)
MicroARNs , Neoplasias Ováricas , ARN Largo no Codificante , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Endógeno Competitivo , Línea Celular Tumoral , Neoplasias Ováricas/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo
5.
Cell Rep ; 42(10): 113273, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37858471

RESUMEN

RNA N6-methyladenosine (m6A) modification is implicated in cancer progression, yet its role in regulating long noncoding RNAs during cancer progression remains unclear. Here, we report that the m6A demethylase fat mass and obesity-associated protein (FTO) stabilizes long intergenic noncoding RNA for kinase activation (LINK-A) to promote cell proliferation and chemoresistance in esophageal squamous cell carcinoma (ESCC). Mechanistically, LINK-A promotes the interaction between minichromosome maintenance complex component 3 (MCM3) and cyclin-dependent kinase 1 (CDK1), increasing MCM3 phosphorylation. This phosphorylation facilitates the loading of the MCM complex onto chromatin, which promotes cell-cycle progression and subsequent cell proliferation. Moreover, LINK-A disrupts the interaction between MCM3 and hypoxia-inducible factor 1α (HIF-1α), abrogating MCM3-mediated HIF-1α transcriptional repression and promoting glycolysis and chemoresistance. These results elucidate the mechanism by which FTO-stabilized LINK-A plays oncogenic roles and identify the FTO/LINK-A/MCM3/HIF-1α axis as a promising therapeutic target for ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Componente 3 del Complejo de Mantenimiento de Minicromosoma , Núcleo Celular , Proliferación Celular , Línea Celular Tumoral , Subunidad alfa del Factor 1 Inducible por Hipoxia , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato
6.
Cancer Res ; 82(16): 2887-2903, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35731019

RESUMEN

Squamous cell carcinomas (SCC) constitute a group of human malignancies that originate from the squamous epithelium. Most patients with SCC experience treatment failure and relapse and have a poor prognosis due to de novo and acquired resistance to first-line chemotherapeutic agents. To identify chemoresistance mechanisms and to explore novel targets for chemosensitization, we performed whole-transcriptome sequencing of paired resistant and parental SCC cells. We identified DLGAP1 antisense RNA 2 (D-AS2) as a crucial noncoding RNA that contributes to chemoresistance in SCC. Mechanistically, D-AS2 affected chromatin accessibility around the histone mark H3K27ac of FAM3 metabolism regulating signaling molecule D (FAM3D), reducing FAM3D mRNA transcription and extracellular protein secretion. FAM3D interacted with the Gαi-coupled G protein-coupled receptors formyl peptide receptor 1 (FPR1) and FPR2 to suppress phospholipase D (PLD) activity, and reduced FAM3D increased PLD signaling. Moreover, activated PLD promoted phosphatidic acid (PA) production and subsequent nuclear translocation of yes-associated protein (YAP). Accordingly, in vivo administration of a D-AS2-targeting antisense oligonucleotide sensitized SCC to cisplatin treatment. In summary, this study shows that D-AS2/FAM3D-mediated PLD/PA lipid signaling is essential for SCC chemoresistance, suggesting D-AS2 can be targeted to sensitize SCC to cytotoxic chemotherapeutic agents. SIGNIFICANCE: This study identifies D-AS2 as a targetable lipid-related long noncoding RNA that increases phospholipase D activity to promote YAP signaling, triggering chemoresistance in SCC.


Asunto(s)
Carcinoma de Células Escamosas , Fosfolipasa D , ARN Largo no Codificante , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Citocinas/metabolismo , Resistencia a Antineoplásicos/genética , Humanos , Ácidos Fosfatidicos , Fosfolipasa D/metabolismo , ARN Largo no Codificante/genética , Transducción de Señal
7.
Cell Rep ; 41(4): 111561, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36288705

RESUMEN

Oral and esophageal squamous cell carcinomas (SCCs) are associated with high mortality, yet the molecular mechanisms underlying these malignancies are largely unclear. We show that DNA hypermethylation of otubain 2 (OTUB2), a previously recognized oncogene, drives tongue and esophageal SCC initiation and drug resistance. Mechanistically, OTUB2 promotes the deubiquitination and phosphorylation of signal transducer and activator of transcription 1 (STAT1) and subsequently regulates the transcription of calmodulin-like protein 3 (CALML3). Activation of CALML3-mediated mitochondrial calcium signaling promotes oxidative phosphorylation (OXPHOS) and the synthesis of phosphatidylserine (PS). In mouse models, orally administered soybean-derived PS inhibits SCC initiation in cells with low OTUB2 expression and increases their sensitivity to chemotherapy. Our study indicates that the OTUB2/STAT1/CALML3/PS axis plays tumor-suppressive roles and shows the potential of PS administration as a strategy for the treatment and prevention of tongue and esophageal SCCs.


Asunto(s)
Calmodulina , Fosfatidilserinas , Animales , Ratones , Calmodulina/metabolismo , Línea Celular Tumoral , ADN , Transducción de Señal , Factor de Transcripción STAT1/metabolismo , Tioléster Hidrolasas
8.
Adv Sci (Weinh) ; 8(8): 2002874, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33898171

RESUMEN

Apoptosis-inducing factor (AIF) plays a dual role in regulating cell survival and apoptosis, acting as a prosurvival factor in mitochondria via its NADH oxidoreductase activity and activating the caspase-independent apoptotic pathway (i.e., parthanatos) after nuclear translocation. However, whether one factor conjunctively controls the separated functions of AIF is not clear. Here, it is shown that OTU deubiquitinase 1 (OTUD1) acts as a link between the two functions of AIF via deubiquitination events. Deubiquitination of AIF at K244 disrupts the normal mitochondrial structure and compromises oxidative phosphorylation, and deubiquitination of AIF at K255 enhances its DNA-binding ability to promote parthanatos. Moreover, OTUD1 stabilizes DDB1 and CUL4 associated factor 10 (DCAF10) and recruits the cullin 4A (CUL4A)-damage specific DNA binding protein 1 (DDB1) complex to promote myeloid cell leukemia sequence 1 (MCL1) degradation, thereby activating caspase-dependent apoptotic signaling. Collectively, these results reveal the central role of OTUD1 in activating both caspase-independent and caspase-dependent apoptotic signaling and propose decreased OTUD1 expression as a key event promoting chemoresistance in esophageal squamous cell carcinoma.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Apoptosis/fisiología , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Animales , Caspasas/metabolismo , Modelos Animales de Enfermedad , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Transporte de Proteínas/fisiología , Proteasas Ubiquitina-Específicas/genética
9.
Cell Death Differ ; 27(6): 1981-1997, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31831874

RESUMEN

Squamous cell carcinoma (SCC) is defined as a category of aggressive malignancies arising from the squamous epithelium of various organs. Resistance to chemotherapies is a common feature of SCCs, which leads to a poor prognosis among SCC patients. Recently, studies have illustrated the essential tumor suppressive role of ARID1A in several cancer types, but its role in SCCs remains unclear. Cancer stemness has been recognized as a main reason for tumorigenesis and is commonly correlated with chemoresistance, yet the relationship between ARID1A and cancer stemness remains unknown. In this study, we showed that Arid1a conditional knockout mice had a high incidence of SCCs occurring in the tongue and esophagus. ARID1A depletion promoted tumor initiation and cancer stemness in human SCC cells. Mechanistic studies revealed that ARID1A blocked the interaction between cyclin-dependent kinases (CDKs) and retinoblastoma protein (Rb), reducing the phosphorylation of Rb. Dephosphorylated Rb suppressed E2F1 activity and then suppressed cancer stemness by inactivating c-Myc. Furthermore, we showed that ARID1A depletion significantly increased the chemoresistance of SCC and that a CDK inhibitor exhibited a favorable effect on rescuing the chemoresistance caused by ARID1A loss. Collectively, our study showed that ARID1A inhibits the cancer stemness of SCCs by competing with CDKs to bind with Rb to inhibit the E2F1/c-Myc pathway.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Proteínas de Unión al ADN/fisiología , Factores de Transcripción/fisiología , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos , Factor de Transcripción E2F1/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Proteína de Retinoblastoma/metabolismo
10.
Cell Rep ; 30(1): 98-111.e5, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31914402

RESUMEN

Squamous cell carcinoma (SCC) is an aggressive epithelial malignancy, yet the molecular mechanisms underlying SCC development are elusive. ARID1A is frequently mutated in various cancer types, but both mutation rates and expression levels of ARID1A are ubiquitously low in SCCs. Here, we reveal that excessive protein degradation mediated by the ubiquitin-proteasome system (UPS) contributes to the loss of ARID1A expression in SCC. We identify that the E3 ligase TRIM32 and the deubiquitinase USP11 play key roles in controlling ARID1A stability. TRIM32 depletion inhibits SCC cell proliferation, metastasis, and chemoresistance by stabilizing ARID1A, while USP11 depletion promotes SCC development by promoting ARID1A degradation. We show that syndecan-2 (SDC2) is the downstream target of both ARID1A and USP11 and that SDC2 depletion abolishes the oncogenic function of ARID1A loss. In summary, our data reveal UPS-mediated protein degradation as a mechanism underlying ARID1A loss and propose an important role for the TRIM32/USP11-ARID1A-SDC2 axis in SCC.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Proteínas de Unión al ADN/metabolismo , Oncogenes , Tioléster Hidrolasas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Anciano , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular , Proteínas de Unión al ADN/química , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Femenino , Humanos , Masculino , Ratones Desnudos , Persona de Mediana Edad , Metástasis de la Neoplasia , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Estabilidad Proteica , Proteolisis , Transducción de Señal , Factores de Transcripción/química , Ubiquitina/metabolismo , Ubiquitinación
11.
Cancer Res ; 80(3): 406-417, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32015157

RESUMEN

Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complexes have a mutation rate of approximately 20% in human cancer, and ARID1A is the most frequently mutated component. However, some components of SWI/SNF complexes, including ARID1A, exhibit a very low mutation rate in squamous cell carcinoma (SCC), and their role in SCC remains unknown. Here, we demonstrate that the low expression of ARID1A in SCC is the result of promoter hypermethylation. Low levels of ARID1A were associated with a poor prognosis. ARID1A maintained transcriptional homeostasis through both direct and indirect chromatin-remodeling mechanisms. Depletion of ARID1A activated an oncogenic transcriptome that drove SCC progression. The anti-inflammatory natural product parthenolide was synthetically lethal to ARID1A-depleted SCC cells due to its inhibition of both HDAC1 and oncogenic signaling. These findings support the clinical application of parthenolide to treat patients with SCC with low ARID1A expression. SIGNIFICANCE: This study reveals novel inactivation mechanisms and tumor-suppressive roles of ARID1A in SCC and proposes parthenolide as an effective treatment for patients with SCC with low ARID1A expression.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinogénesis/patología , Carcinoma de Células Escamosas/patología , Metilación de ADN , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción/genética , Animales , Antiinflamatorios no Esteroideos/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Movimiento Celular , Proliferación Celular , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Progresión de la Enfermedad , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Homeostasis , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Pronóstico , Sesquiterpenos/farmacología , Transducción de Señal , Factores de Transcripción/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA