Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 124(3): 034705, 2006 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-16438598

RESUMEN

Aluminum tris (quinoline-8-olate) (Alq3) is used as an electron-transport layer in organic light-emitting diodes. The material can be obtained in a wide range of different solid phases, both crystalline and amorphous, by deposition from the vapor phase or from solution under controlled conditions. While the structure of the crystalline polymorphs of Alq3 has been investigated thoroughly by x-ray diffraction as well as solid-state NMR, very little information is currently available on the amount of structural disorder in the amorphous forms of Alq3. In the present contribution, we report the use of 27Al NMR spectroscopy in the solid state under magic angle spinning to extract such information from amorphous vapor deposits of Alq3. The NMR spectra obtained from these samples exhibit different degrees of broadening, reflecting distributions of the electric-field gradient tensor at the site of the aluminum ion. These distributions can be obtained from the NMR spectra by solving the corresponding inverse problem. From these results, the magnitude of structural disorder in terms of molecular geometry has been estimated by density-functional theory calculations. It was found that the electric-field gradient anisotropy delta follows a bimodal distribution. Its majority component is centered around delta values comparable to the meridianal alpha crystal polymorph and has a width of about 10%, corresponding to distortions of the molecular geometry of a few degrees in the orientation of the ligands. Alq3 samples obtained at higher deposition rates exhibit higher degrees of disorder. The minor component, present at about 7%, has a much smaller anisotropy, suggesting that it may be due to the facial isomer of Alq3.

2.
J Chem Phys ; 123(24): 244504, 2005 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-16396546

RESUMEN

A new method for the characterization of orientational order in organic solids based on magic-angle spinning NMR spectroscopy is introduced. The method is related to the rotor-synchronized magic-angle spinning experiment proposed by Harbison and Spiess [Chem. Phys. Lett. 124, 128 (1986)], but exploits the anisotropy of the deuterium quadrupolar coupling instead of the carbon-13 chemical shielding anisotropy. Magic-angle spinning provides a sensitivity advantage over pseudostatic techniques; using the deuterium quadrupolar coupling makes the method applicable to systems that do not exhibit large carbon chemical shift anisotropies, such as aliphatic polymers. Due to the magnitude of the deuterium quadrupolar coupling, a large number of spinning sidebands can be reliably observed, allowing for a precise determination of the orientational distribution function. Experimental data are analyzed in terms of Wigner matrix basis functions as well as the conjugate orthogonal functions framework. Unidirectionally cold-drawn poly(ethylene) is used as an example to demonstrate the method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA