Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Comput Chem ; 45(6): 352-361, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-37873926

RESUMEN

Metalloenzymes catalyze a wide range of chemical transformations, with the active site residues playing a key role in modulating chemical reactivity and selectivity. Unlike smaller synthetic catalysts, a metalloenzyme active site is embedded in a larger protein, which makes interrogation of electronic properties and geometric features with quantum mechanical calculations challenging. Here we implement the ability to fetch crystallographic structures from the Protein Data Bank and analyze the metal binding sites in the program molSimplify. We show the usefulness of the newly created protein3D class to extract the local environment around non-heme iron enzymes containing a two histidine motif and prepare 372 structures for quantum mechanical calculations. Our implementation of protein3D serves to expand the range of systems molSimplify can be used to analyze and will enable high-throughput study of metal-containing active sites in proteins.


Asunto(s)
Metaloproteínas , Metaloproteínas/química , Catálisis , Dominio Catalítico
2.
J Am Chem Soc ; 145(26): 14365-14378, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37339429

RESUMEN

The challenge of direct partial oxidation of methane to methanol has motivated the targeted search of metal-organic frameworks (MOFs) as a promising class of materials for this transformation because of their site-isolated metals with tunable ligand environments. Thousands of MOFs have been synthesized, yet relatively few have been screened for their promise in methane conversion. We developed a high-throughput virtual screening workflow that identifies MOFs from a diverse space of experimental MOFs that have not been studied for catalysis, yet are thermally stable, synthesizable, and have promising unsaturated metal sites for C-H activation via a terminal metal-oxo species. We carried out density functional theory calculations of the radical rebound mechanism for methane-to-methanol conversion on models of the secondary building units (SBUs) from 87 selected MOFs. While we showed that oxo formation favorability decreases with increasing 3d filling, consistent with prior work, previously observed scaling relations between oxo formation and hydrogen atom transfer (HAT) are disrupted by the greater diversity in our MOF set. Accordingly, we focused on Mn MOFs, which favor oxo intermediates without disfavoring HAT or leading to high methanol release energies─a key feature for methane hydroxylation activity. We identified three Mn MOFs comprising unsaturated Mn centers bound to weak-field carboxylate ligands in planar or bent geometries with promising methane-to-methanol kinetics and thermodynamics. The energetic spans of these MOFs are indicative of promising turnover frequencies for methane to methanol that warrant further experimental catalytic studies.

3.
Chem Rev ; 121(16): 9927-10000, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34260198

RESUMEN

Transition-metal complexes are attractive targets for the design of catalysts and functional materials. The behavior of the metal-organic bond, while very tunable for achieving target properties, is challenging to predict and necessitates searching a wide and complex space to identify needles in haystacks for target applications. This review will focus on the techniques that make high-throughput search of transition-metal chemical space feasible for the discovery of complexes with desirable properties. The review will cover the development, promise, and limitations of "traditional" computational chemistry (i.e., force field, semiempirical, and density functional theory methods) as it pertains to data generation for inorganic molecular discovery. The review will also discuss the opportunities and limitations in leveraging experimental data sources. We will focus on how advances in statistical modeling, artificial intelligence, multiobjective optimization, and automation accelerate discovery of lead compounds and design rules. The overall objective of this review is to showcase how bringing together advances from diverse areas of computational chemistry and computer science have enabled the rapid uncovering of structure-property relationships in transition-metal chemistry. We aim to highlight how unique considerations in motifs of metal-organic bonding (e.g., variable spin and oxidation state, and bonding strength/nature) set them and their discovery apart from more commonly considered organic molecules. We will also highlight how uncertainty and relative data scarcity in transition-metal chemistry motivate specific developments in machine learning representations, model training, and in computational chemistry. Finally, we will conclude with an outlook of areas of opportunity for the accelerated discovery of transition-metal complexes.


Asunto(s)
Complejos de Coordinación/química , Ensayos Analíticos de Alto Rendimiento , Aprendizaje Automático , Metales/química , Elementos de Transición/química
4.
Phys Chem Chem Phys ; 25(11): 8103-8116, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36876903

RESUMEN

Virtual high-throughput screening (VHTS) and machine learning (ML) with density functional theory (DFT) suffer from inaccuracies from the underlying density functional approximation (DFA). Many of these inaccuracies can be traced to the lack of derivative discontinuity that leads to a curvature in the energy with electron addition or removal. Over a dataset of nearly one thousand transition metal complexes typical of VHTS applications, we computed and analyzed the average curvature (i.e., deviation from piecewise linearity) for 23 density functional approximations spanning multiple rungs of "Jacob's ladder". While we observe the expected dependence of the curvatures on Hartree-Fock exchange, we note limited correlation of curvature values between different rungs of "Jacob's ladder". We train ML models (i.e., artificial neural networks or ANNs) to predict the curvature and the associated frontier orbital energies for each of these 23 functionals and then interpret differences in curvature among the different DFAs through analysis of the ML models. Notably, we observe spin to play a much more important role in determining the curvature of range-separated and double hybrids in comparison to semi-local functionals, explaining why curvature values are weakly correlated between these and other families of functionals. Over a space of 187.2k hypothetical compounds, we use our ANNs to pinpoint DFAs for which representative transition metal complexes have near-zero curvature with low uncertainty, demonstrating an approach to accelerate screening of complexes with targeted optical gaps.

5.
J Chem Phys ; 159(2)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37431914

RESUMEN

Spin crossover (SCO) complexes, which exhibit changes in spin state in response to external stimuli, have applications in molecular electronics and are challenging materials for computational design. We curate a dataset of 95 Fe(II) SCO complexes (SCO-95) from the Cambridge Structural Database that have available low- and high-temperature crystal structures and, in most cases, confirmed experimental spin transition temperatures (T1/2). We study these complexes using density functional theory (DFT) with 30 functionals spanning across multiple rungs of "Jacob's ladder" to understand the effect of exchange-correlation functional on electronic and Gibbs free energies associated with spin crossover. We specifically assess the effect of varying the Hartree-Fock exchange fraction (aHF) in structures and properties within the B3LYP family of functionals. We identify three best-performing functionals, a modified version of B3LYP (aHF = 0.10), M06-L, and TPSSh, that accurately predict SCO behavior for the majority of the complexes. While M06-L performs well, MN15-L, a more recently developed Minnesota functional, fails to predict SCO behavior for all complexes, which could be the result of differences in datasets used for parametrization of M06-L and MN15-L and also the increased number of parameters for MN15-L. Contrary to observations from prior studies, double-hybrids with higher aHF values are found to strongly stabilize high-spin states and therefore exhibit poor performance in predicting SCO behavior. Computationally predicted T1/2 values are consistent among the three functionals but show limited correlation to experimentally reported T1/2 values. These failures are attributed to the lack of crystal packing effects and counter-anions in the DFT calculations that would be needed to account for phenomena such as hysteresis and two-step SCO behavior. The SCO-95 set thus presents opportunities for method development, both in terms of increasing model complexity and method fidelity.

6.
Acc Chem Res ; 54(3): 532-545, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33480674

RESUMEN

The variability of chemical bonding in open-shell transition-metal complexes not only motivates their study as functional materials and catalysts but also challenges conventional computational modeling tools. Here, tailoring ligand chemistry can alter preferred spin or oxidation states as well as electronic structure properties and reactivity, creating vast regions of chemical space to explore when designing new materials atom by atom. Although first-principles density functional theory (DFT) remains the workhorse of computational chemistry in mechanism deduction and property prediction, it is of limited use here. DFT is both far too computationally costly for widespread exploration of transition-metal chemical space and also prone to inaccuracies that limit its predictive performance for localized d electrons in transition-metal complexes. These challenges starkly contrast with the well-trodden regions of small-organic-molecule chemical space, where the analytical forms of molecular mechanics force fields and semiempirical theories have for decades accelerated the discovery of new molecules, accurate DFT functional performance has been demonstrated, and gold-standard methods from correlated wavefunction theory can predict experimental results to chemical accuracy.The combined promise of transition-metal chemical space exploration and lack of established tools has mandated a distinct approach. In this Account, we outline the path we charted in exploration of transition-metal chemical space starting from the first machine learning (ML) models (i.e., artificial neural network and kernel ridge regression) and representations for the prediction of open-shell transition-metal complex properties. The distinct importance of the immediate coordination environment of the metal center as well as the lack of low-level methods to accurately predict structural properties in this coordination environment first motivated and then benefited from these ML models and representations. Once developed, the recipe for prediction of geometric, spin state, and redox potential properties was straightforwardly extended to a diverse range of other properties, including in catalysis, computational "feasibility", and the gas separation properties of periodic metal-organic frameworks. Interpretation of selected features most important for model prediction revealed new ways to encapsulate design rules and confirmed that models were robustly mapping essential structure-property relationships. Encountering the special challenge of ensuring that good model performance could generalize to new discovery targets motivated investigation of how to best carry out model uncertainty quantification. Distance-based approaches, whether in model latent space or in carefully engineered feature space, provided intuitive measures of the domain of applicability. With all of these pieces together, ML can be harnessed as an engine to tackle the large-scale exploration of transition-metal chemical space needed to satisfy multiple objectives using efficient global optimization methods. In practical terms, bringing these artificial intelligence tools to bear on the problems of transition-metal chemical space exploration has resulted in ML-model assessments of large, multimillion compound spaces in minutes and validated new design leads in weeks instead of decades.

7.
J Chem Phys ; 156(18): 184112, 2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35568542

RESUMEN

Low-cost, non-empirical corrections to semi-local density functional theory are essential for accurately modeling transition-metal chemistry. Here, we demonstrate the judiciously modified density functional theory (jmDFT) approach with non-empirical U and J parameters obtained directly from frontier orbital energetics on a series of transition-metal complexes. We curate a set of nine representative Ti(III) and V(IV) d1 transition-metal complexes and evaluate their flat-plane errors along the fractional spin and charge lines. We demonstrate that while jmDFT improves upon both DFT+U and semi-local DFT with the standard atomic orbital projectors (AOPs), it does so inefficiently. We rationalize these inefficiencies by quantifying hybridization in the relevant frontier orbitals. To overcome these limitations, we introduce a procedure for computing a molecular orbital projector (MOP) basis for use with jmDFT. We demonstrate this single set of d1 MOPs to be suitable for nearly eliminating all energetic delocalization and static correlation errors. In all cases, MOP jmDFT outperforms AOP jmDFT, and it eliminates most flat-plane errors at non-empirical values. Unlike DFT+U or hybrid functionals, jmDFT nearly eliminates energetic delocalization and static correlation errors within a non-empirical framework.

8.
J Chem Phys ; 156(7): 074101, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35183086

RESUMEN

Strategies for machine-learning (ML)-accelerated discovery that are general across material composition spaces are essential, but demonstrations of ML have been primarily limited to narrow composition variations. By addressing the scarcity of data in promising regions of chemical space for challenging targets such as open-shell transition-metal complexes, general representations and transferable ML models that leverage known relationships in existing data will accelerate discovery. Over a large set (∼1000) of isovalent transition-metal complexes, we quantify evident relationships for different properties (i.e., spin-splitting and ligand dissociation) between rows of the Periodic Table (i.e., 3d/4d metals and 2p/3p ligands). We demonstrate an extension to the graph-based revised autocorrelation (RAC) representation (i.e., eRAC) that incorporates the group number alongside the nuclear charge heuristic that otherwise overestimates dissimilarity of isovalent complexes. To address the common challenge of discovery in a new space where data are limited, we introduce a transfer learning approach in which we seed models trained on a large amount of data from one row of the Periodic Table with a small number of data points from the additional row. We demonstrate the synergistic value of the eRACs alongside this transfer learning strategy to consistently improve model performance. Analysis of these models highlights how the approach succeeds by reordering the distances between complexes to be more consistent with the Periodic Table, a property we expect to be broadly useful for other material domains.

9.
J Chem Phys ; 157(18): 184112, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36379790

RESUMEN

To accelerate the exploration of chemical space, it is necessary to identify the compounds that will provide the most additional information or value. A large-scale analysis of mononuclear octahedral transition metal complexes deposited in an experimental database confirms an under-representation of lower-symmetry complexes. From a set of around 1000 previously studied Fe(II) complexes, we show that the theoretical space of synthetically accessible complexes formed from the relatively small number of unique ligands is significantly (∼816k) larger. For the properties of these complexes, we validate the concept of ligand additivity by inferring heteroleptic properties from a stoichiometric combination of homoleptic complexes. An improved interpolation scheme that incorporates information about cis and trans isomer effects predicts the adiabatic spin-splitting energy to around 2 kcal/mol and the HOMO level to less than 0.2 eV. We demonstrate a multi-stage strategy to discover leads from the 816k Fe(II) complexes within a targeted property region. We carry out a coarse interpolation from homoleptic complexes that we refine over a subspace of ligands based on the likelihood of generating complexes with targeted properties. We validate our approach on nine new binary and ternary complexes predicted to be in a targeted zone of discovery, suggesting opportunities for efficient transition metal complex discovery.

10.
J Am Chem Soc ; 143(42): 17535-17547, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34643374

RESUMEN

Although the tailored metal active sites and porous architectures of MOFs hold great promise for engineering challenges ranging from gas separations to catalysis, a lack of understanding of how to improve their stability limits their use in practice. To overcome this limitation, we extract thousands of published reports of the key aspects of MOF stability necessary for their practical application: the ability to withstand high temperatures without degrading and the capacity to be activated by removal of solvent molecules. From nearly 4000 manuscripts, we use natural language processing and image analysis to obtain over 2000 solvent-removal stability measures and 3000 thermal degradation temperatures. We analyze the relationships between stability properties and the chemical and geometric structures in this set to identify limits of prior heuristics derived from smaller sets of MOFs. By training predictive machine learning (ML, i.e., Gaussian process and artificial neural network) models to encode the structure-property relationships with graph- and pore-structure-based representations, we are able to make predictions of stability orders of magnitude faster than conventional physics-based modeling or experiment. Interpretation of important features in ML models provides insights that we use to identify strategies to engineer increased stability into typically unstable 3d-transition-metal-containing MOFs that are frequently targeted for catalytic applications. We expect our approach to accelerate the time to discovery of stable, practical MOF materials for a wide range of applications.

11.
Phys Chem Chem Phys ; 22(34): 19326-19341, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32820781

RESUMEN

Density functional theory (DFT) is widely used in transition-metal chemistry, yet essential properties such as spin-state energetics in transition-metal complexes (TMCs) are well known to be sensitive to the choice of the exchange-correlation functional. Increasing the amount of exchange in a functional typically shifts the preferred ground state in first-row TMCs from low-spin to high-spin by penalizing delocalization error, but the effect on properties of second-row complexes is less well known. We compare the exchange sensitivity of adiabatic spin-splitting energies in pairs of mononuclear 3d and 4d mid-row octahedral transition-metal complexes. We analyze hundreds of complexes assembled from four metals in two oxidation states with ten small monodentate ligands that span a wide range of field strengths expected to favor a variety of ground states. We observe consistently lower but proportional sensitivity to exchange fraction among 4d TMCs with respect to their isovalent 3d TMC counterparts, leading to the largest difference in sensitivities for the strongest field ligands. The combined effect of reduced exchange sensitivities and the greater low-spin bias of most 4d TMCs means that while over one-third of 3d TMCs change ground states over a modest variation (ca. 0.0-0.3) in exchange fraction, almost no 4d TMCs do. Differences in delocalization, as judged through changes in the metal-ligand bond lengths between spin states, do not explain the distinct behavior of 4d TMCs. Instead, evaluation of potential energy curves in 3d and 4d TMCs reveals that higher exchange sensitivities in 3d TMCs are likely due to the opposing effect of exchange on the low-spin and high-spin states, whereas the effect on both spin states is more comparable in 4d TMCs.

12.
J Phys Chem A ; 124(16): 3286-3299, 2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32223165

RESUMEN

Determination of ground-state spins of open-shell transition-metal complexes is critical to understanding catalytic and materials properties but also challenging with approximate electronic structure methods. As an alternative approach, we demonstrate how structure alone can be used to guide assignment of ground-state spin from experimentally determined crystal structures of transition-metal complexes. We first identify the limits of distance-based heuristics from distributions of metal-ligand bond lengths of over 2000 unique mononuclear Fe(II)/Fe(III) transition-metal complexes. To overcome these limits, we employ artificial neural networks (ANNs) to predict spin-state-dependent metal-ligand bond lengths and classify experimental ground-state spins based on agreement of experimental structures with the ANN predictions. Although the ANN is trained on hybrid density functional theory data, we exploit the method-insensitivity of geometric properties to enable assignment of ground states for the majority (ca. 80-90%) of structures. We demonstrate the utility of the ANN by data-mining the literature for spin-crossover (SCO) complexes, which have experimentally observed temperature-dependent geometric structure changes, by correctly assigning almost all (>95%) spin states in the 46 Fe(II) SCO complex set. This approach represents a promising complement to more conventional energy-based spin-state assignment from electronic structure theory at the low cost of a machine learning model.

13.
Inorg Chem ; 58(16): 10592-10606, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-30834738

RESUMEN

Recent transformative advances in computing power and algorithms have made computational chemistry central to the discovery and design of new molecules and materials. First-principles simulations are increasingly accurate and applicable to large systems with the speed needed for high-throughput computational screening. Despite these strides, the combinatorial challenges associated with the vastness of chemical space mean that more than just fast and accurate computational tools are needed for accelerated chemical discovery. In transition-metal chemistry and catalysis, unique challenges arise. The variable spin, oxidation state, and coordination environments favored by elements with well-localized d or f electrons provide great opportunity for tailoring properties in catalytic or functional (e.g., magnetic) materials but also add layers of uncertainty to any design strategy. We outline five key mandates for realizing computationally driven accelerated discovery in inorganic chemistry: (i) fully automated simulation of new compounds, (ii) knowledge of prediction sensitivity or accuracy, (iii) faster-than-fast property prediction methods, (iv) maps for rapid chemical space traversal, and (v) a means to reveal design rules on the kilocompound scale. Through case studies in open-shell transition-metal chemistry, we describe how advances in methodology and software in each of these areas bring about new chemical insights. We conclude with our outlook on the next steps in this process toward realizing fully autonomous discovery in inorganic chemistry using computational chemistry.

14.
J Biomech Eng ; 137(10): 101007, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26300418

RESUMEN

The intervertebral disk has an excellent swelling capacity to absorb water, which is thought to be largely due to the high proteoglycan composition. Injury, aging, degeneration, and diurnal loading are all noted by a significant decrease in water content and tissue hydration. The objective of this study was to evaluate the effect of hydration, through osmotic loading, on tissue swelling and compressive stiffness of healthy intervertebral disks. The wet weight of nucleus pulposus (NP) and annulus fibrosus (AF) explants following swelling was 50% or greater, demonstrating significant ability to absorb water under all osmotic loading conditions (0.015 M-3.0 M phosphate buffered saline (PBS)). Estimated NP residual strains, calculated from the swelling ratio, were approximately 1.5 × greater than AF residual strains. Compressive stiffness increased with hyperosmotic loading, which is thought to be due to material compaction from osmotic-loading and the nonlinear mechanical behavior. Importantly, this study demonstrated that residual strains and material properties are greatly dependent on osmotic loading. The findings of this study support the notion that swelling properties from osmotic loading will be important for accurately describing the effect of degeneration and injury on disk mechanics. Furthermore, the tissue swelling will be an important consideration for developing biological repair strategies aimed at restoring mechanical behavior toward a healthy disk.


Asunto(s)
Disco Intervertebral/metabolismo , Fenómenos Mecánicos , Agua/metabolismo , Animales , Fenómenos Biomecánicos , Bovinos , Fuerza Compresiva , Elasticidad , Cinética , Ensayo de Materiales , Ósmosis , Estrés Mecánico
15.
Artículo en Inglés | MEDLINE | ID: mdl-39365083

RESUMEN

Metal-organic frameworks (MOFs) have been widely studied for their ability to capture and store greenhouse gases. However, most computational discovery efforts study hypothetical MOFs without consideration of their stability, limiting the practical application of novel materials. We overcome this limitation by screening hypothetical ultrastable MOFs that have predicted high thermal and activation stability, as judged by machine learning (ML) models trained on experimental measures of stability. We enhance this set by computing the bulk modulus as a measure of mechanical stability and filter 1102 mechanically robust hypothetical MOFs from a database of ultrastable MOFs (USMOF DB). Grand Canonical Monte Carlo simulations are then employed to predict the gas adsorption properties of these hypothetical MOFs, alongside a database of experimental MOFs. We identify privileged building blocks that lead MOFs in USMOF DB to show exceptional working capacities compared to the experimental MOFs. We interpret these differences by training ML models on CO2 and CH4 adsorption in these databases, showing how poor model transferability between data sets indicates that novel design rules can be derived from USMOF DB that would not have been gathered through assessment of structurally characterized MOFs. We identify geometric features and node chemistry that will enable the rational design of MOFs with enhanced gas adsorption properties in synthetically realizable MOFs.

16.
Annu Rev Biophys ; 53(1): 109-125, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39013026

RESUMEN

The relationship between genotype and phenotype, or the fitness landscape, is the foundation of genetic engineering and evolution. However, mapping fitness landscapes poses a major technical challenge due to the amount of quantifiable data that is required. Catalytic RNA is a special topic in the study of fitness landscapes due to its relatively small sequence space combined with its importance in synthetic biology. The combination of in vitro selection and high-throughput sequencing has recently provided empirical maps of both complete and local RNA fitness landscapes, but the astronomical size of sequence space limits purely experimental investigations. Next steps are likely to involve data-driven interpolation and extrapolation over sequence space using various machine learning techniques. We discuss recent progress in understanding RNA fitness landscapes, particularly with respect to protocells and machine representations of RNA. The confluence of technical advances may significantly impact synthetic biology in the near future.


Asunto(s)
ARN Catalítico , ARN Catalítico/química , ARN Catalítico/genética , ARN Catalítico/metabolismo , Evolución Molecular , Aptitud Genética/genética
17.
J Phys Chem Lett ; 14(25): 5798-5804, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37338110

RESUMEN

We survey more than 240 000 crystallized mononuclear transition metal complexes (TMCs) to identify trends in preferred geometric structure and metal coordination. While we observe that an increased level of d filling correlates with a lower coordination number preference, we note exceptions, and we observe undersampling of 4d/5d transition metals and 3p-coordinating ligands. For the one-third of mononuclear TMCs that are octahedral, analysis of the 67 symmetry classes of their ligand environments reveals that complexes often contain monodentate ligands that may be removable, forming an open site amenable to catalysis. Due to their use in catalysis, we analyze trends in coordination by tetradentate ligands in terms of the capacity to support multiple metals and the variability of coordination geometry. We identify promising tetradentate ligands that co-occur in crystallized complexes with labile monodentate ligands that would lead to reactive sites. Literature mining suggests that these ligands are untapped as catalysts, motivating proposal of a promising octa-functionalized porphyrin.

18.
J Chem Theory Comput ; 19(1): 190-197, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36548116

RESUMEN

When a many-body wave function of a system cannot be captured by a single determinant, high-level multireference (MR) methods are required to properly explain its electronic structure. MR diagnostics to estimate the magnitude of such static correlation have been primarily developed for molecular systems and range from low in computational cost to as costly as the full MR calculation itself. We report the first application of low-cost MR diagnostics based on the fractional occupation number calculated with finite-temperature DFT to solid-state systems. To compare the behavior of the diagnostics on solids and molecules, we select metal-organic frameworks (MOFs) as model materials because their reticular nature provides an intuitive way to identify molecular derivatives. On a series of closed-shell MOFs, we demonstrate that the DFT-based MR diagnostics are equally applicable to solids as to their molecular derivatives. The magnitude and spatial distribution of the MR character of a MOF are found to have a good correlation with those of its molecular derivatives, which can be calculated much more affordably in comparison to those of the full MOF. The additivity of MR character discussed here suggests the set of molecular derivatives to be a good representation of a MOF for both MR detection and ultimately for MR corrections, facilitating accurate and efficient high-throughput screening of MOFs and other porous solids.

19.
J Phys Chem B ; 127(49): 10592-10600, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38038675

RESUMEN

The design of ion-selective materials with improved separation efficacy and efficiency is paramount, as current technologies fail to meet real-world deployment challenges. Selectivity in these materials can be informed by local ion binding in confined membrane ion channels. In this study, we utilize a data-driven approach to investigate design features in small molecular complexes coordinating ions as simplified models of ion channels. We curate a data set of 563 alkali metal coordinating molecular complexes (i.e., with Li+, Na+, or K+) from the Cambridge Structural Database and calculate differential ion binding energies using density functional theory. Using this information, we probe when and why structures favor exchange with alternate ions. Our analysis reveals that energetic preferences are related to ion size but are largely due to chemical interactions rather than structural reorganization. We identify unique trends in the selectivity for Li+ over other alkali ions, including the presence of N coordination atoms, planar coordination geometry, and small coordinating ring sizes. We use machine learning models to identify the key contributions of both geometric and electronic features in predicting selective ion binding. These physical insights offer preliminary guidance into the design of optimal membranes for ion selectivity.

20.
Chem Sci ; 14(6): 1419-1433, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36794185

RESUMEN

Prediction of the excited state properties of photoactive iridium complexes challenges ab initio methods such as time-dependent density functional theory (TDDFT) both from the perspective of accuracy and of computational cost, complicating high-throughput virtual screening (HTVS). We instead leverage low-cost machine learning (ML) models and experimental data for 1380 iridium complexes to perform these prediction tasks. We find the best-performing and most transferable models to be those trained on electronic structure features from low-cost density functional tight binding calculations. Using artificial neural network (ANN) models, we predict the mean emission energy of phosphorescence, the excited state lifetime, and the emission spectral integral for iridium complexes with accuracy competitive with or superseding that of TDDFT. We conduct feature importance analysis to determine that high cyclometalating ligand ionization potential correlates to high mean emission energy, while high ancillary ligand ionization potential correlates to low lifetime and low spectral integral. As a demonstration of how our ML models can be used for HTVS and the acceleration of chemical discovery, we curate a set of novel hypothetical iridium complexes and use uncertainty-controlled predictions to identify promising ligands for the design of new phosphors while retaining confidence in the quality of the ANN predictions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA