Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37430601

RESUMEN

In the realm of computer vision, semantic segmentation is the task of recognizing objects in images at the pixel level. This is done by performing a classification of each pixel. The task is complex and requires sophisticated skills and knowledge about the context to identify objects' boundaries. The importance of semantic segmentation in many domains is undisputed. In medical diagnostics, it simplifies the early detection of pathologies, thus mitigating the possible consequences. In this work, we provide a review of the literature on deep ensemble learning models for polyp segmentation and develop new ensembles based on convolutional neural networks and transformers. The development of an effective ensemble entails ensuring diversity between its components. To this end, we combined different models (HarDNet-MSEG, Polyp-PVT, and HSNet) trained with different data augmentation techniques, optimization methods, and learning rates, which we experimentally demonstrate to be useful to form a better ensemble. Most importantly, we introduce a new method to obtain the segmentation mask by averaging intermediate masks after the sigmoid layer. In our extensive experimental evaluation, the average performance of the proposed ensembles over five prominent datasets beat any other solution that we know of. Furthermore, the ensembles also performed better than the state-of-the-art on two of the five datasets, when individually considered, without having been specifically trained for them.


Asunto(s)
Suministros de Energía Eléctrica , Conocimiento , Aprendizaje , Redes Neurales de la Computación , Semántica
2.
Entropy (Basel) ; 25(11)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37998194

RESUMEN

This paper explores the potential of using the SAM (Segment-Anything Model) segmentator to enhance the segmentation capability of known methods. SAM is a promptable segmentation system that offers zero-shot generalization to unfamiliar objects and images, eliminating the need for additional training. The open-source nature of SAM allows for easy access and implementation. In our experiments, we aim to improve the segmentation performance by providing SAM with checkpoints extracted from the masks produced by mainstream segmentators, and then merging the segmentation masks provided by these two networks. We examine the "oracle" method (as upper bound baseline performance), where segmentation masks are inferred only by SAM with checkpoints extracted from the ground truth. One of the main contributions of this work is the combination (fusion) of the logit segmentation masks produced by the SAM model with the ones provided by specialized segmentation models such as DeepLabv3+ and PVTv2. This combination allows for a consistent improvement in segmentation performance in most of the tested datasets. We exhaustively tested our approach on seven heterogeneous public datasets, obtaining state-of-the-art results in two of them (CAMO and Butterfly) with respect to the current best-performing method with a combination of an ensemble of mainstream segmentator transformers and the SAM segmentator. The results of our study provide valuable insights into the potential of incorporating the SAM segmentator into existing segmentation techniques. We release with this paper the open-source implementation of our method.

3.
Sensors (Basel) ; 22(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36015898

RESUMEN

CNNs and other deep learners are now state-of-the-art in medical imaging research. However, the small sample size of many medical data sets dampens performance and results in overfitting. In some medical areas, it is simply too labor-intensive and expensive to amass images numbering in the hundreds of thousands. Building Deep CNN ensembles of pre-trained CNNs is one powerful method for overcoming this problem. Ensembles combine the outputs of multiple classifiers to improve performance. This method relies on the introduction of diversity, which can be introduced on many levels in the classification workflow. A recent ensembling method that has shown promise is to vary the activation functions in a set of CNNs or within different layers of a single CNN. This study aims to examine the performance of both methods using a large set of twenty activations functions, six of which are presented here for the first time: 2D Mexican ReLU, TanELU, MeLU + GaLU, Symmetric MeLU, Symmetric GaLU, and Flexible MeLU. The proposed method was tested on fifteen medical data sets representing various classification tasks. The best performing ensemble combined two well-known CNNs (VGG16 and ResNet50) whose standard ReLU activation layers were randomly replaced with another. Results demonstrate the superiority in performance of this approach.


Asunto(s)
Diagnóstico por Imagen , Redes Neurales de la Computación
4.
Sensors (Basel) ; 21(17)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34502700

RESUMEN

In this paper, we examine two strategies for boosting the performance of ensembles of Siamese networks (SNNs) for image classification using two loss functions (Triplet and Binary Cross Entropy) and two methods for building the dissimilarity spaces (FULLY and DEEPER). With FULLY, the distance between a pattern and a prototype is calculated by comparing two images using the fully connected layer of the Siamese network. With DEEPER, each pattern is described using a deeper layer combined with dimensionality reduction. The basic design of the SNNs takes advantage of supervised k-means clustering for building the dissimilarity spaces that train a set of support vector machines, which are then combined by sum rule for a final decision. The robustness and versatility of this approach are demonstrated on several cross-domain image data sets, including a portrait data set, two bioimage and two animal vocalization data sets. Results show that the strategies employed in this work to increase the performance of dissimilarity image classification using SNN are closing the gap with standalone CNNs. Moreover, when our best system is combined with an ensemble of CNNs, the resulting performance is superior to an ensemble of CNNs, demonstrating that our new strategy is extracting additional information.


Asunto(s)
Redes Neurales de la Computación , Animales
5.
Sensors (Basel) ; 21(5)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668172

RESUMEN

Traditionally, classifiers are trained to predict patterns within a feature space. The image classification system presented here trains classifiers to predict patterns within a vector space by combining the dissimilarity spaces generated by a large set of Siamese Neural Networks (SNNs). A set of centroids from the patterns in the training data sets is calculated with supervised k-means clustering. The centroids are used to generate the dissimilarity space via the Siamese networks. The vector space descriptors are extracted by projecting patterns onto the similarity spaces, and SVMs classify an image by its dissimilarity vector. The versatility of the proposed approach in image classification is demonstrated by evaluating the system on different types of images across two domains: two medical data sets and two animal audio data sets with vocalizations represented as images (spectrograms). Results show that the proposed system's performance competes competitively against the best-performing methods in the literature, obtaining state-of-the-art performance on one of the medical data sets, and does so without ad-hoc optimization of the clustering methods on the tested data sets.

6.
Sensors (Basel) ; 21(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34770423

RESUMEN

COVID-19 frequently provokes pneumonia, which can be diagnosed using imaging exams. Chest X-ray (CXR) is often useful because it is cheap, fast, widespread, and uses less radiation. Here, we demonstrate the impact of lung segmentation in COVID-19 identification using CXR images and evaluate which contents of the image influenced the most. Semantic segmentation was performed using a U-Net CNN architecture, and the classification using three CNN architectures (VGG, ResNet, and Inception). Explainable Artificial Intelligence techniques were employed to estimate the impact of segmentation. A three-classes database was composed: lung opacity (pneumonia), COVID-19, and normal. We assessed the impact of creating a CXR image database from different sources, and the COVID-19 generalization from one source to another. The segmentation achieved a Jaccard distance of 0.034 and a Dice coefficient of 0.982. The classification using segmented images achieved an F1-Score of 0.88 for the multi-class setup, and 0.83 for COVID-19 identification. In the cross-dataset scenario, we obtained an F1-Score of 0.74 and an area under the ROC curve of 0.9 for COVID-19 identification using segmented images. Experiments support the conclusion that even after segmentation, there is a strong bias introduced by underlying factors from different sources.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Inteligencia Artificial , Humanos , Pulmón/diagnóstico por imagen , SARS-CoV-2 , Rayos X
7.
Inf Fusion ; 76: 1-7, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33967656

RESUMEN

In this paper, we compare and evaluate different testing protocols used for automatic COVID-19 diagnosis from X-Ray images in the recent literature. We show that similar results can be obtained using X-Ray images that do not contain most of the lungs. We are able to remove the lungs from the images by turning to black the center of the X-Ray scan and training our classifiers only on the outer part of the images. Hence, we deduce that several testing protocols for the recognition are not fair and that the neural networks are learning patterns in the dataset that are not correlated to the presence of COVID-19. Finally, we show that creating a fair testing protocol is a challenging task, and we provide a method to measure how fair a specific testing protocol is. In the future research we suggest to check the fairness of a testing protocol using our tools and we encourage researchers to look for better techniques than the ones that we propose.

8.
Bioinformatics ; 35(11): 1844-1851, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30395157

RESUMEN

MOTIVATION: Because DNA-binding proteins (DNA-BPs) play a vital role in all aspects of genetic activity, the development of reliable and efficient systems for automatic DNA-BP classification is becoming a crucial proteomic technology. Key to this technology is the discovery of powerful protein representations and feature extraction methods. The goal of this article is to develop experimentally a system for automatic DNA-BP classification by comparing and combining different descriptors taken from different types of protein representations. RESULTS: The descriptors we evaluate include those starting from the position-specific scoring matrix (PSSM) of proteins, those derived from the amino-acid sequence (AAS), various matrix representations of proteins and features taken from the three-dimensional tertiary structure of proteins. We also introduce some new variants of protein descriptors. Each descriptor is used to train a separate support vector machine (SVM), and results are combined by sum rule. Our final system obtains state-or-the-art results on three benchmark DNA-BP datasets. AVAILABILITY AND IMPLEMENTATION: The MATLAB code for replicating the experiments presented in this paper is available at https://github.com/LorisNanni.


Asunto(s)
Proteómica , Secuencia de Aminoácidos , Biología Computacional , Proteínas de Unión al ADN , Posición Específica de Matrices de Puntuación , Máquina de Vectores de Soporte
9.
Sensors (Basel) ; 20(6)2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32183334

RESUMEN

In recent years, the field of deep learning has achieved considerable success in pattern recognition, image segmentation, and many other classification fields. There are many studies and practical applications of deep learning on images, video, or text classification. Activation functions play a crucial role in discriminative capabilities of the deep neural networks and the design of new "static" or "dynamic" activation functions is an active area of research. The main difference between "static" and "dynamic" functions is that the first class of activations considers all the neurons and layers as identical, while the second class learns parameters of the activation function independently for each layer or even each neuron. Although the "dynamic" activation functions perform better in some applications, the increased number of trainable parameters requires more computational time and can lead to overfitting. In this work, we propose a mixture of "static" and "dynamic" activation functions, which are stochastically selected at each layer. Our idea for model design is based on a method for changing some layers along the lines of different functional blocks of the best performing CNN models, with the aim of designing new models to be used as stand-alone networks or as a component of an ensemble. We propose to replace each activation layer of a CNN (usually a ReLU layer) by a different activation function stochastically drawn from a set of activation functions: in this way, the resulting CNN has a different set of activation function layers.

10.
Sensors (Basel) ; 19(23)2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31795280

RESUMEN

A fundamental problem in computer vision is face detection. In this paper, an experimentally derived ensemble made by a set of six face detectors is presented that maximizes the number of true positives while simultaneously reducing the number of false positives produced by the ensemble. False positives are removed using different filtering steps based primarily on the characteristics of the depth map related to the subwindows of the whole image that contain candidate faces. A new filtering approach based on processing the image with different wavelets is also proposed here. The experimental results show that the applied filtering steps used in our best ensemble reduce the number of false positives without decreasing the detection rate. This finding is validated on a combined dataset composed of four others for a total of 549 images, including 614 upright frontal faces acquired in unconstrained environments. The dataset provides both 2D and depth data. For further validation, the proposed ensemble is tested on the well-known BioID benchmark dataset, where it obtains a 100% detection rate with an acceptable number of false positives.

11.
Bioinformatics ; 33(18): 2837-2841, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28444139

RESUMEN

MOTIVATION: Given an unknown compound, is it possible to predict its Anatomical Therapeutic Chemical class/classes? This is a challenging yet important problem since such a prediction could be used to deduce not only a compound's possible active ingredients but also its therapeutic, pharmacological and chemical properties, thereby substantially expediting the pace of drug development. The problem is challenging because some drugs and compounds belong to two or more ATC classes, making machine learning extremely difficult. RESULTS: In this article a multi-label classifier system is proposed that incorporates information about a compound's chemical-chemical interaction and its structural and fingerprint similarities to other compounds belonging to the different ATC classes. The proposed system reshapes a 1D feature vector to obtain a 2D matrix representation of the compound. This matrix is then described by a histogram of gradients that is fed into a Multi-Label Learning with Label-Specific Features classifier. Rigorous cross-validations demonstrate the superior prediction quality of this method compared with other state-of-the-art approaches developed for this problem, a superiority that is reflected particularly in the absolute true rate, the most important and harshest metric for assessing multi-label systems. AVAILABILITY AND IMPLEMENTATION: The MATLAB code for replicating the experiments presented in this article is available at https://www.dropbox.com/s/7v1mey48tl9bfgz/ToolPaperATC.rar?dl=0 . CONTACT: loris.nanni@unipd.it. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Interacciones Farmacológicas , Aprendizaje Automático , Programas Informáticos
12.
J Theor Biol ; 359: 120-8, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-24949993

RESUMEN

The study of protein-drug interactions is a significant issue for drug development. Unfortunately, it is both expensive and time-consuming to perform physical experiments to determine whether a drug and a protein are interacting with each other. Some previous attempts to design an automated system to perform this task were based on the knowledge of the 3D structure of a protein, which is not always available in practice. With the availability of protein sequences generated in the post-genomic age, however, a sequence-based solution to deal with this problem is necessary. Following other works in this area, we propose a new machine learning system based on several protein descriptors extracted from several protein representations, such as, variants of the position specific scoring matrix (PSSM) of proteins, the amino-acid sequence, and a matrix representation of a protein. The prediction engine is operated by an ensemble of support vector machines (SVMs), with each SVM trained on a specific descriptor and the results of each SVM combined by sum rule. The overall success rate achieved by our final ensemble is notably higher than previous results obtained on the same datasets using the same testing protocols reported in the literature. MATLAB code and the datasets used in our experiments are freely available for future comparison at http://www.dei.unipd.it/node/2357.


Asunto(s)
Interacciones Farmacológicas , Redes y Vías Metabólicas , Preparaciones Farmacéuticas/metabolismo , Proteínas/química , Proteínas/metabolismo , Biología Computacional , Humanos , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida , Preparaciones Farmacéuticas/química , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
13.
J Theor Biol ; 360: 109-116, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25026218

RESUMEN

Successful protein structure identification enables researchers to estimate the biological functions of proteins, yet it remains a challenging problem. The most common method for determining an unknown protein's structural class is to perform expensive and time-consuming manual experiments. Because of the availability of amino acid sequences generated in the post-genomic age, it is possible to predict an unknown protein's structural class using machine learning methods given a protein's amino-acid sequence and/or its secondary structural elements. Following recent research in this area, we propose a new machine learning system that is based on combining several protein descriptors extracted from different protein representations, such as position specific scoring matrix (PSSM), the amino-acid sequence, and secondary structural sequences. The prediction engine of our system is operated by an ensemble of support vector machines (SVMs), where each SVM is trained on a different descriptor. The results of each SVM are combined by sum rule. Our final ensemble produces a success rate that is substantially better than previously reported results on three well-established datasets. The MATLAB code and datasets used in our experiments are freely available for future comparison at http://www.dei.unipd.it/node/2357.


Asunto(s)
Modelos Genéticos , Conformación Proteica , Proteínas/clasificación , Proteínas/genética , Programas Informáticos , Algoritmos , Secuencia de Aminoácidos , Inteligencia Artificial , Máquina de Vectores de Soporte
14.
ScientificWorldJournal ; 2014: 236717, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25028675

RESUMEN

Many domains would benefit from reliable and efficient systems for automatic protein classification. An area of particular interest in recent studies on automatic protein classification is the exploration of new methods for extracting features from a protein that work well for specific problems. These methods, however, are not generalizable and have proven useful in only a few domains. Our goal is to evaluate several feature extraction approaches for representing proteins by testing them across multiple datasets. Different types of protein representations are evaluated: those starting from the position specific scoring matrix of the proteins (PSSM), those derived from the amino-acid sequence, two matrix representations, and features taken from the 3D tertiary structure of the protein. We also test new variants of proteins descriptors. We develop our system experimentally by comparing and combining different descriptors taken from the protein representations. Each descriptor is used to train a separate support vector machine (SVM), and the results are combined by sum rule. Some stand-alone descriptors work well on some datasets but not on others. Through fusion, the different descriptors provide a performance that works well across all tested datasets, in some cases performing better than the state-of-the-art.


Asunto(s)
Inteligencia Artificial , Biología Computacional/métodos , Proteínas/clasificación , Algoritmos , Proteínas/química
15.
Bioinformatics ; 28(8): 1151-7, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22390939

RESUMEN

MOTIVATION: The microarray report measures the expressions of tens of thousands of genes, producing a feature vector that is high in dimensionality and that contains much irrelevant information. This dimensionality degrades classification performance. Moreover, datasets typically contain few samples for training, leading to the 'curse of dimensionality' problem. It is essential, therefore, to find good methods for reducing the size of the feature set. RESULTS: In this article, we propose a method for gene microarray classification that combines different feature reduction approaches for improving classification performance. Using a support vector machine (SVM) as our classifier, we examine an SVM trained using a set of selected genes; an SVM trained using the feature set obtained by Neighborhood Preserving Embedding feature transform; a set of SVMs trained using a set of orthogonal wavelet coefficients of different wavelet mothers; a set of SVMs trained using texture descriptors extracted from the microarray, considering it as an image; and an ensemble that combines the best feature extraction methods listed above. The positive results reported offer confirmation that combining different features extraction methods greatly enhances system performance. The experiments were performed using several different datasets, and our results [expressed as both accuracy and area under the receiver operating characteristic (ROC) curve] show the goodness of the proposed approach with respect to the state of the art. AVAILABILITY: The MATHLAB code of the proposed approach is publicly available at bias.csr.unibo.it/nanni/micro.rar.


Asunto(s)
Neoplasias/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Máquina de Vectores de Soporte , Área Bajo la Curva , Humanos
16.
Amino Acids ; 44(3): 887-901, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23108592

RESUMEN

Many domains have a stake in the development of reliable systems for automatic protein classification. Of particular interest in recent studies of automatic protein classification is the exploration of new methods for extracting features from a protein that enhance classification for specific problems. These methods have proven very useful in one or two domains, but they have failed to generalize well across several domains (i.e. classification problems). In this paper, we evaluate several feature extraction approaches for representing proteins with the aim of sequence-based protein classification. Several protein representations are evaluated, those starting from: the position specific scoring matrix (PSSM) of the proteins; the amino-acid sequence; a matrix representation of the protein, of dimension (length of the protein) ×20, obtained using the substitution matrices for representing each amino-acid as a vector. A valuable result is that a texture descriptor can be extracted from the PSSM protein representation which improves the performance of standard descriptors based on the PSSM representation. Experimentally, we develop our systems by comparing several protein descriptors on nine different datasets. Each descriptor is used to train a support vector machine (SVM) or an ensemble of SVM. Although different stand-alone descriptors work well on some datasets (but not on others), we have discovered that fusion among classifiers trained using different descriptors obtains a good performance across all the tested datasets. Matlab code/Datasets used in the proposed paper are available at http://www.bias.csr.unibo.it\nanni\PSSM.rar.


Asunto(s)
Biología Computacional/métodos , Proteínas/clasificación , Análisis de Secuencia de Proteína/métodos , Animales , Bases de Datos de Proteínas , Humanos , Proteínas/química , Homología de Secuencia de Aminoácido , Máquina de Vectores de Soporte
17.
Reprod Biomed Online ; 26(1): 42-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23177416

RESUMEN

One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally subjective. Recently, due to the rapid growth in the capacity to extract texture descriptors from a given image, a growing interest has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. This work concentrates the efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of assisted reproduction technology, starting from their images. The artificial intelligence system proposed in this work is based on a set of Levenberg-Marquardt neural networks trained using textural descriptors (the local binary patterns). The proposed system was tested on two data sets of 269 oocytes and 269 corresponding embryos from 104 women and compared with other machine learning methods already proposed in the past for similar classification problems. Although the results are only preliminary, they show an interesting classification performance. This technique may be of particular interest in those countries where legislation restricts embryo selection. One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally subjective. Recently, due to the rapid growth in our capacity to extract texture descriptors from a given image, a growing interest has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. In this work, we concentrate our efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of assisted reproduction technology, starting from their images. The artificial intelligence system proposed in this work is based on a set of Levenberg-Marquardt neural networks trained using textural descriptors (the 'local binary patterns'). The proposed system is tested on two data sets, of 269 oocytes and 269 corresponding embryos from 104 women, and compared with other machine learning methods already proposed in the past for similar classification problems. Although the results are only preliminary, they showed an interesting classification performance. This technique may be of particular interest in those countries where legislation restricts embryo selection.


Asunto(s)
Inteligencia Artificial , Blastocisto/clasificación , Blastocisto/citología , Procesamiento de Imagen Asistido por Computador/métodos , Oocitos/clasificación , Oocitos/citología , Técnicas de Apoyo para la Decisión , Fertilización In Vitro , Humanos , Redes Neurales de la Computación
18.
J Imaging ; 9(2)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36826954

RESUMEN

Skin detection involves identifying skin and non-skin areas in a digital image and is commonly used in various applications, such as analyzing hand gestures, tracking body parts, and facial recognition. The process of distinguishing between skin and non-skin regions in a digital image is widely used in a variety of applications, ranging from hand-gesture analysis to body-part tracking to facial recognition. Skin detection is a challenging problem that has received a lot of attention from experts and proposals from the research community in the context of intelligent systems, but the lack of common benchmarks and unified testing protocols has hampered fairness among approaches. Comparisons are very difficult. Recently, the success of deep neural networks has had a major impact on the field of image segmentation detection, resulting in various successful models to date. In this work, we survey the most recent research in this field and propose fair comparisons between approaches, using several different datasets. The main contributions of this work are (i) a comprehensive review of the literature on approaches to skin-color detection and a comparison of approaches that may help researchers and practitioners choose the best method for their application; (ii) a comprehensive list of datasets that report ground truth for skin detection; and (iii) a testing protocol for evaluating and comparing different skin-detection approaches. Moreover, we propose an ensemble of convolutional neural networks and transformers that obtains a state-of-the-art performance.

19.
Amino Acids ; 43(2): 657-65, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21993538

RESUMEN

The last decade has seen an explosion in the collection of protein data. To actualize the potential offered by this wealth of data, it is important to develop machine systems capable of classifying and extracting features from proteins. Reliable machine systems for protein classification offer many benefits, including the promise of finding novel drugs and vaccines. In developing our system, we analyze and compare several feature extraction methods used in protein classification that are based on the calculation of texture descriptors starting from a wavelet representation of the protein. We then feed these texture-based representations of the protein into an Adaboost ensemble of neural network or a support vector machine classifier. In addition, we perform experiments that combine our feature extraction methods with a standard method that is based on the Chou's pseudo amino acid composition. Using several datasets, we show that our best approach outperforms standard methods. The Matlab code of the proposed protein descriptors is available at http://bias.csr.unibo.it/nanni/wave.rar .


Asunto(s)
Proteínas/clasificación , Análisis de Secuencia de Proteína , Análisis de Ondículas , Secuencia de Aminoácidos , Área Bajo la Curva , Análisis de Fourier , Modelos Químicos , Redes Neurales de la Computación , Proteínas/química , Curva ROC , Estadísticas no Paramétricas , Máquina de Vectores de Soporte
20.
J Imaging ; 8(4)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35448223

RESUMEN

The classification of vocal individuality for passive acoustic monitoring (PAM) and census of animals is becoming an increasingly popular area of research. Nearly all studies in this field of inquiry have relied on classic audio representations and classifiers, such as Support Vector Machines (SVMs) trained on spectrograms or Mel-Frequency Cepstral Coefficients (MFCCs). In contrast, most current bioacoustic species classification exploits the power of deep learners and more cutting-edge audio representations. A significant reason for avoiding deep learning in vocal identity classification is the tiny sample size in the collections of labeled individual vocalizations. As is well known, deep learners require large datasets to avoid overfitting. One way to handle small datasets with deep learning methods is to use transfer learning. In this work, we evaluate the performance of three pretrained CNNs (VGG16, ResNet50, and AlexNet) on a small, publicly available lion roar dataset containing approximately 150 samples taken from five male lions. Each of these networks is retrained on eight representations of the samples: MFCCs, spectrogram, and Mel spectrogram, along with several new ones, such as VGGish and stockwell, and those based on the recently proposed LM spectrogram. The performance of these networks, both individually and in ensembles, is analyzed and corroborated using the Equal Error Rate and shown to surpass previous classification attempts on this dataset; the best single network achieved over 95% accuracy and the best ensembles over 98% accuracy. The contributions this study makes to the field of individual vocal classification include demonstrating that it is valuable and possible, with caution, to use transfer learning with single pretrained CNNs on the small datasets available for this problem domain. We also make a contribution to bioacoustics generally by offering a comparison of the performance of many state-of-the-art audio representations, including for the first time the LM spectrogram and stockwell representations. All source code for this study is available on GitHub.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA