Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38930987

RESUMEN

Peanut shells' adsorption performance in caffeine and triclosan removal was studied. Peanut shells were analyzed for their chemical composition, morphology, and surface functional groups. Batch adsorption and fixed-bed column experiments were carried out with solutions containing 30 mg/L of caffeine and triclosan. The parameters examined included peanut shell particle size (120-150, 300-600, and 800-2000 µm), adsorbent dose (0.02-60 g/L), contact time (up to 180 min), bed height (4-8 cm), and hydraulic loading rate (2.0 and 4.0 m3/m2-day). After determining the optimal adsorption conditions, kinetics, isotherm, and breakthrough curve models were applied to analyze the experimental data. Peanut shells showed an irregular surface and consisted mainly of polysaccharides (around 70% lignin, cellulose, and hemicellulose), with a specific surface area of 1.7 m2/g and a pore volume of 0.005 cm3/g. The highest removal efficiencies for caffeine (85.6 ± 1.4%) and triclosan (89.3 ± 1.5%) were achieved using the smallest particles and 10.0 and 0.1 g/L doses over 180 and 45 min, respectively. Triclosan showed easier removal compared to caffeine due to its higher lipophilic character. The pseudo-second-order kinetics model provided the best fit with the experimental data, suggesting a chemisorption process between caffeine/triclosan and the adsorbent. Equilibrium data were well-described by the Sips model, with maximum adsorption capacities of 3.3 mg/g and 289.3 mg/g for caffeine and triclosan, respectively. In fixed-bed column adsorption tests, particle size significantly influenced efficiency and hydraulic behavior, with 120-150 µm particles exhibiting the highest adsorption capacity for caffeine (0.72 mg/g) and triclosan (143.44 mg/g), albeit with clogging issues. The experimental data also showed good agreement with the Bohart-Adams, Thomas, and Yoon-Nelson models. Therefore, the findings of this study highlight not only the effective capability of peanut shells to remove caffeine and triclosan but also their versatility as a promising option for water treatment and sanitation applications in different contexts.


Asunto(s)
Arachis , Cafeína , Triclosán , Cafeína/química , Cafeína/aislamiento & purificación , Triclosán/química , Triclosán/aislamiento & purificación , Arachis/química , Adsorción , Cinética , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Tamaño de la Partícula , Purificación del Agua/métodos
2.
Chemistry ; 29(63): e202302254, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37635073

RESUMEN

Self-assembling features, chiroptical activity, and spin filtering properties are reported for 2,15- and 4,13-disubstituted [6]helicenes decorated in their periphery with 3,4,5-tris(dodecyloxy)-N-(4-ethynylphenyl)benzamide moieties. The weak non-covalent interaction between these units conditions the corresponding circularly polarized luminescence and spin polarization. The self-assembly is overall weak for these [6]helicene derivatives that, despite the formation of H-bonding interactions between the amide groups present in the peripheral moieties, shows very similar chiroptical properties both in the monomeric or aggregated states. This effect could be explained by considering the steric effect that these groups could generate in the growing of the corresponding aggregate formed. Importantly, the self-assembling features also condition chiral induced spin selectivity (CISS effect), with experimental spin polarization (SP) values found between 35-40 % for both systems, as measured by magnetic-conducting atomic force microscopy (AFM) technique.

3.
Angew Chem Int Ed Engl ; 62(14): e202218572, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36735857

RESUMEN

The synthesis and self-assembling features of N-annulated perylenebisimides (N-PBIs) 2-4 are reported and compared with the complex self-assembly of N-PBI 1. The studies presented herein demonstrate that increasing the length of the alkyl spacer separating the central aromatic core of the dye and the peripheral side chains cancels the differentiation on the corresponding supramolecular polymerization. Thus, only 2 is able to form two different supramolecular polymorphs. The formation of kinetically trapped monomeric species is observed for all the N-PBIs 2-4. These metastable species, constituted by intramolecularly H-bonded pseudocycles of 7, 8, 9, or 10 members for compounds 1, 2, 3, and 4, respectively, provoke kinetically controlled supramolecular polymerizations that can be accelerated by the addition of seeds. The results presented herein shed light on the intricate process of differentiation in self-assembly.

4.
J Am Chem Soc ; 144(17): 7709-7719, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35404592

RESUMEN

We report on the synthesis and self-assembly of 2,15- and 4,13-disubstituted carbo[6]helicenes 1 and 2 bearing 3,4,5-tridodecyloxybenzamide groups. The self-assembly of these [6]helicenes is strongly influenced by the substitution pattern in the helicene core that affects the mutual orientation of the monomeric units in the aggregated form. Thus, the 2,15-substituted derivative 1 undergoes an isodesmic supramolecular polymerization forming globular nanoparticles that maintain circularly polarized light (CPL) with glum values as high as 2 × 10-2. Unlike carbo[6]helicene 1, the 4,13-substituted derivative 2 follows a cooperative mechanism generating helical one-dimensional fibers. As a result of this helical organization, [6]helicene 2 exhibits a unique modification in its ECD spectral pattern showing sign inversion at low energy, accompanied by a sign change of the CPL with glum values of 1.2 × 10-3, thus unveiling an example of CPL inversion upon supramolecular polymerization. These helical supramolecular structures with high chiroptical activity, when deposited on conductive surfaces, revealed highly efficient electron-spin filtering abilities, with electron spin polarizations up to 80% for 1 and 60% for 2, as measured by magnetic conducting atomic force microscopy.

5.
Angew Chem Int Ed Engl ; 61(5): e202114290, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34822210

RESUMEN

Hierarchical organization of self-assembled structures into superstructures is omnipresent in Nature but has been rarely achieved in synthetic molecular assembly due to the absence of clear structural rules. We herein report on the self-assembly of scissor-shaped azobenzene dyads which form discrete nanotoroids that further organize into 2D porous networks. The steric demand of the peripheral aliphatic units diminishes the trend of the azobenzene dyad to constitute stackable nanotoroids in solution, thus affording isolated (unstackable) nanotoroids upon cooling. Upon drying, these nanotoroids organize at graphite surface to form well-defined 2D porous networks. The photoirradiation with UV and visible light enabled reversible dissociation and reconstruction of nanotoroids through the efficient trans↔cis isomerization of azobenzene moieties in solution.

6.
Phys Chem Chem Phys ; 23(40): 22923-22935, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34617940

RESUMEN

The performance of fibrous membrane composites fabricated via electrospinning is strongly influenced by the solution's properties, process variables and ambient conditions, although a precise mechanism for controlling the properties of the resulting composite has remained elusive. In this work, we focus on the fabrication of electrospun poly(vinylpyrrolidone) (PVP) fibers, by varying both the polymer concentration and the mixture of ethanol (EtOH) and dimethylformamide (DMF) used as solvent. The impact of the solvent composition on the structural properties is assessed by a combined experimental and theoretical approach, employing scanning electron microscopy (SEM), differential scanning calorimetry (DSC), rheology, Fourier-transform infrared spectroscopy (FTIR) and stress-strain curves obtained from tensile tests to characterize the fibrous membranes produced, and density functional theory (DFT) calculations to explain the solvent's affect on PVP crystallization. We establish a morphological phase diagram, and propose a possible mechanism based on the measured fiber diameter distribution, the viscoelastic properties of the precursor solution, the correlation between the functional groups and the mechanical properties, the thermal transitions and the degree of crystallinity. We also employ DFT calculations to model the polymer coverage at equilibrium of a PVP polymer chain in the presence of EtOH/DMF solvent mixtures to corroborate the crucial role their O or -OH groups play in achieving high PVP coverages and promoting the stability of the resulting fiber. These findings will be valuable to researchers interested in predicting, modulating, and controlling both a fiber's morphology and its concomitant physico-chemical properties.

7.
Artículo en Inglés | MEDLINE | ID: mdl-30929568

RESUMEN

Conventional activated-sludge (AS) technologies are deficient for nutrient removal because they require specific floc characteristics. Therefore, the encapsulated AS with polyvinyl alcohol (PVA) will favor floc's formation that removes nutrients. The applied method was based on monitoring the removal of organic matter and nutrients (NH4+, NO3-, NO2-, PO43-) from synthetic domestic wastewater using laboratory-scale AS. The experimental reactors were operated at 8 h as optimized Hydraulic Retention Time (HRT). The sludge characteristics evaluation was carried out through the Sludge Volumetric Index (SVI), Food/Microorganism ratio (F/M), and Mixed Liquor Volatile Suspended Solids (MLVSS). Other specific floc characteristics, such as zeta potential and effective diameter were also evaluated. The results showed that the encapsulated AS with PVA favors nitrogen and phosphorous removal up to 35% but it did not improve organic matter removal. In addition, encapsulated AS with PVA has the characteristics of filamentous sludge (F/M: 0.7 g COD g-1 MLVSS d-1) with good settleability conditions (SVI: 43 mL g-1 MLSVS h-1) and low zeta potential (ZP: -0.9 mV), which favors its separation from the liquid phase. In conclusion, the encapsulation of AS with PVA improves nutrient removal by improving floc characteristics.


Asunto(s)
Nutrientes/aislamiento & purificación , Alcohol Polivinílico/farmacocinética , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Reactores Biológicos/microbiología , Ciudades , Composición de Medicamentos/métodos , Humanos , Nitrógeno/aislamiento & purificación , Nitrógeno/farmacocinética , Fósforo/aislamiento & purificación , Fósforo/farmacocinética , Alcohol Polivinílico/química , Características de la Residencia , Purificación del Agua/métodos
8.
Polymers (Basel) ; 16(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000678

RESUMEN

Agro-industrial residue valorization under the umbrella of the circular bioeconomy (CBE) has prompted the search for further forward-thinking alternatives that encourage the mitigation of the industry's environmental footprint. From this perspective, second-life valorization (viz., thermoplastic composites) has been explored for agro-industrial waste (viz., oil palm empty fruit bunch fibers, OPEFBFs) that has already been used previously in other circular applications (viz., the removal of domestic wastewater contaminants). Particularly, this ongoing study evaluated the performance of raw residues (R-OPEFBFs) within three different size ranges (250-425, 425-600, 600-800 µm) both before and after their utilization in biofiltration processes (as post-adsorbents, P-OPEFBFs) to reinforce a polymer matrix of acrylic resin. The research examined the changes in R-OPEFBF composition and morphology caused by microorganisms in the biofilters and their impact on the mechanical properties of the composites. Smaller R-OPEFBFs (250-425 µm) demonstrated superior mechanical performance. Additionally, the composites with P-OPEFBFs displayed significant enhancements in their mechanical properties (3.9-40.3%) compared to those with R-OPEFBFs. The combination of the three fiber sizes improved the mechanical behavior of the composites, indicating the potential for both R-OPEFBFs and P-OPEFBFs as reinforcement materials in composite applications.

9.
Chem Sci ; 14(36): 9900-9909, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37736635

RESUMEN

The synthesis and self-assembling features of the N-annulated perylene diimide (NPBI) 1 in different solvents are reported. Compound 1 possesses two chiral linkers, derived from (S)-(+)-alaninol, that connect the central aromatic NPBI segment and the peripheral trialkoxybenzamide units. The Ala-based linker has been demonstrated to strongly favor the formation of intramolecularly H-bonded seven-membered pseudocycles. NPBI 1 shows a strong tendency to self-assemble even in a good solvent like CHCl3 and the formation of chiral dimers is detected in this good solvent. Both experimental techniques and theoretical calculations reveal that the intramolecular H-bonded pseudocycles are very robust and the formation of chiral dimers is driven by the π-stacking of two units of the NPBI core. Unexpectedly, an efficient transfer of the asymmetry of the point chirality at the linker to the aromatic moiety is observed in the molecularly dissolved state. Changing the solvent to more apolar methylcyclohexane modifies the self-assembly process and the formation of chiral supramolecular polymers is detected. The supramolecular polymerization of 1 is demonstrated to follow an isodesmic mechanism unlike previous referable systems. In the formation of the supramolecular polymers of 1, the combination of experimental and computational data indicates that the H-bonded pseudocycles are also present in the aggregated state and the rope-like, columnar aggregates formed by the self-assembly of 1 rely on the π-stacking of the NPBI backbones.

10.
Polymers (Basel) ; 15(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36772005

RESUMEN

Biological agents and their metabolic activity produce significant changes over the microstructure and properties of composites reinforced with natural fibers. In the present investigation, oil palm empty fruit bunch (OPEFB) fiber-reinforced acrylic thermoplastic composites were elaborated at three processing temperatures and subjected to water immersion, Prohesion cycle, and continuous salt-fog aging testing. After exposition, microbiological identification was accomplished in terms of fungal colonization. The characterization was complemented by weight loss, mechanical, infrared, and thermogravimetric analysis, as well as scanning electron microscopy. As a result of aging, fungal colonization was observed exclusively after continuous salt fog treatment, particularly by different species of Aspergillus spp. genus. Furthermore, salt spray promoted filamentous fungi growth producing hydrolyzing enzymes capable of degrading the cell walls of OPEFB fibers. In parallel, these fibers swelled due to humidity, which accelerated fungal growth, increased stress, and caused micro-cracks on the surface of composites. This produced the fragility of the composites, increasing Young's modulus, and decreasing both elongation at break and toughness. The infrared spectra showed changes in the intensity and appearance of bands associated with functional groups. Thermogravimetric results confirmed fungal action as the main cause of the deterioration.

11.
Chem Sci ; 13(39): 11577-11584, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36320383

RESUMEN

The synthesis of two pairs of enantiomeric cyano-luminogens 1 and 2, in which the central chromophore is a p-phenylene or a 2,5-dithienylbenzene moiety, respectively, is described and their supramolecular polymerization under kinetic and thermodynamic control investigated. Compounds 1 and 2 form supramolecular polymers by quadruple H-bonding arrays between the amide groups and the π-stacking of the central aromatic moieties. In addition, the peripheral benzamide units are able to form intramolecularly H-bonded pseudocycles that behave as metastable monomer M* thus affording kinetically and thermodynamically controlled aggregated species AggI and AggII. The chiroptical and emissive features of compounds 1 and 2 strongly depend on the aggregation state and the nature of the central aromatic unit. Compounds 1 exhibit a bisignated dichroic response of different intensity but with similar sign for both AggI1 and AggII1 species, which suggests the formation of helical aggregates. In fact, these helical supramolecular polymers can be visualized by AFM imaging. Furthermore, both AggI and AggII species formed by the self-assembly of compounds 1 show CPL (circularly polarized light) activity of opposite sign depending on the aggregation state. Thienyl-derivatives 2 display dissimilar chiroptical, morphological and emissive characteristics for the corresponding kinetically and thermodynamically controlled aggregated species AggI and AggII in comparison to those registered for compounds 1. Thus, a stereomutation phenomenon is observed in the AggI2 → AggII2 conversion. In addition, AggI2 is arranged into nanoparticles that evolve to helical aggregates to afford AggII2. The dissimilar chiroptical and morphological features of AggI2 and AggII2 are also appreciated in the emissive properties. Thus, whilst AggI2 experiences a clear AIE (aggregation induced emission) process and CPL activity, the thermodynamically controlled AggII2 undergoes an ACQ (aggregation caused quenching) process in which the CPL activity is cancelled.

12.
Sci Rep ; 12(1): 15442, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104367

RESUMEN

To compare cognitive function in patients with diabetes mellitus type-2 (T2DM) both with and without diabetic neuropathic pain (DNP). To analyse the relationship between mood and sleep disorders, quality of life and cognitive function in patients with DNP. Cross-sectional study conducted in patients with T2DM and neuropathy. The presence of DNP, cognitive function, mood status, sleep quality, health-related quality of life, pain intensity and phenotype of pain were measured. Descriptive, bivariate and multivariate analyses were performed. A total of 149 patients (71 with DNP) were included. Patients with and without DNP presented similar scores on the TYM (41.46; SD = 6.70 vs. 41.97; SD = 5.50) and those with DNP had a slightly higher frequency of cognitive impairment (TYM score ≤ 41: 40.8% vs. 43.6%). The patients without DNP performed better in the verbal fluency dimension (mean = 3.53; SD = 0.98 vs. mean = 3.82; SD = 0.66). Being older (B = - 0.258) and under treatment with insulin (B = - 2.919) were related with greater cognitive impairment. Obesity (OR = 17.277) and a longer duration of diabetes (OR = 1.317) were also related to greater risk of cognitive impairment. Impaired cognitive function in patients with DNP is more related to T2DM factors than pain factors. The presence of depression and a worse quality of life were related to a greater risk of cognitive impairment. Identifying and controlling these factors should be an essential intervention for maintaining the cognitive function in patients with T2DM and DNP.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Neuralgia , Trastornos del Sueño-Vigilia , Cognición , Estudios Transversales , Diabetes Mellitus Tipo 2/complicaciones , Neuropatías Diabéticas/etiología , Humanos , Neuralgia/etiología , Neuralgia/psicología , Calidad de Vida , Trastornos del Sueño-Vigilia/complicaciones
14.
Materials (Basel) ; 15(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35888481

RESUMEN

In recent years, the use of oil palm wastes has been an interesting approach for the development of sustainable polymer matrix composites. Nevertheless, the water absorption behavior of these materials is one of the most critical factors for their performance over time. In this study, the water uptake characteristics of acrylic thermoplastic matrix composites reinforced separately with oil palm empty fruit bunch (OPEFB) and oil palm kernel shell (OPKS) were evaluated through immersion test in distilled water. The specimens of both composites were manufactured using the compression molding technique at three temperatures (80, 100, and 120 °C) using different particle sizes (425−600 and 600−850 µm). The composites, before and after the absorption test, were characterized by means of Fourier transform infrared spectroscopy, thermogravimetry, and scanning electron microscopy. The evaluation was complemented by the application of the Fickian diffusion model. Overall results showed that water absorption capacity decreased at a higher processing temperature and a larger particle size. In particular, it was observed that the type of reinforcement also influenced both water absorption and diffusivity. OPKS/acrylic and OPEFB/acrylic composites reached a maximum absorption of 77 and 86%, with diffusivities of 7.3 × 10−9 and 15.2 × 10−9 m2/min, respectively. Experimental evidence suggested that the absorption mechanism of the composites followed a non-Fickian model (n < 1.0).

15.
Data Brief ; 45: 108618, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36426085

RESUMEN

Natural fibers used as reinforcements or fillers for materials development greatly affect properties and performance of end-use applications. As a consequence of conditioning processes such as grinding and sieving, average fiber length varies significantly. It is thus necessary to estimate the length as statistical data distribution rather than a single mean value. This approach implies length measurement of a significant number of fibers; however, a very high number of data points requires not only long-time frames but also significative amount of work. To address these issues, this article details a facile methodology to measure the length of a large number of natural fibers of oil palm empty fruit bunch (OPEFB) together with a statistical analysis to verify the correspondence between theoretical distributions and experimental data. Moreover, further information related to spectrophotometric, physico-chemical, mechanical, thermal, and morphological characteristics of OPEFB fibers coming from oil palm cultivation in Ecuador are presented. The data will contribute to comprehensively and rigorously describe the overall effects of natural fiber lengths on material properties.

16.
Chem Commun (Camb) ; 57(37): 4500-4503, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33956018

RESUMEN

The kinetically controlled amplification of asymmetry experienced in the co-assembly of chiral tribiphenylaminetricarboxamides (S)-1 and (R)-1 is investigated. The formation of metastable monomeric species through intramolecular H-bonds retards the efficient amplification of asymmetry due to a chain-capper effect.

17.
Chem Sci ; 13(1): 81-89, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35059154

RESUMEN

Anti-cooperative supramolecular polymerization by attenuated growth exhibited by self-assembling units of two electron-donor benzo[1,2-b:4,5-b']dithiophene (BDT) derivatives (compounds 1a and 1b) and the electron-acceptor 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) (compound 2) is reported. Despite the apparent cooperative mechanism of 1 and 2, AFM imaging and SAXS measurements reveal the formation of small aggregates that suggest the operation of an anti-cooperative mechanism strongly conditioned by an attenuated growth. In this mechanism, the formation of the nuclei is favoured over the subsequent addition of monomeric units to the aggregate, which finally results in short aggregates. Theoretical calculations show that both the BDT and BODIPY motifs, after forming the initial dimeric nuclei, experience a strong distortion of the central aromatic backbone upon growth, which makes the addition of successive monomeric units unfavourable and impedes the formation of long fibrillar structures. Despite the anti-cooperativity observed in the supramolecular polymerization of 1 and 2, the combination of both self-assembling units results in the formation of small co-assembled aggregates with a similar supramolecular polymerization behaviour to that observed for the separate components.

18.
Sci Total Environ ; 801: 149666, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34428664

RESUMEN

The caffeine adsorptive performance and compatibility characteristics (Eisenia foetida Savigny) of rice husk, peanut shell, corn cob and coconut fiber were studied, aiming to assess the suitability of these residues for vermifilter beds. For this purpose, the agro-industrial residues were characterized and the E. foetida Savigny compatibility was determined by acute and chronic toxicity tests. Batch adsorption tests were performed using caffeine solutions. Optimal adsorption conditions, kinetic models, isotherm type and the influence of three particle sizes (120-150, 300-600, 800-2000 µm) in the caffeine removal were determined. Coconut fiber (120-150 µm) proved to be the most efficient residue for the caffeine removal (94.2%), requiring 4 g/L for 30 min. However, coconut fiber was the less compatible for earthworms (14d-LC50 = 82%). The results obtained allow to define adequate strategies, such as mixing highly adsorptive residues with the more compatible ones, to choose the most effective materials for vermifiltration technologies.


Asunto(s)
Oligoquetos , Adsorción , Animales , Cafeína , Cocos , Cinética
19.
Materials (Basel) ; 14(9)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922287

RESUMEN

Contamination of water by heavy metals is a major environmental concern due to the potential ecological impact on human health and aquatic ecosystems. In this work, we studied the chemical modification of various fruit peels such as banana (BP), granadilla (GP), and orange ones (OP) in order to obtain novel bio-adsorbents to improve the removal of Zn(II) ions from 50 mg·L-1 synthetic aqueous solutions. For this purpose, sodium hydroxide and calcium acetate were employed to modify the fruit peels. The moisture, extractives, lignin, hemicellulose, and cellulose contents of the raw materials were determined according to ASTM standards. The obtained bio-adsorbents were characterized by scanning electron microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and thermogravimetric analysis (TGA). The results showed the OP bio-adsorbents performed better, especially when the concentration of the modifier solutions increased, e.g., the OP particles modified using 0.8 M NaOH and Ca(CH3COO)2 solutions resulted in 97% removal of Zn(II) contaminating ions and reached a maximum adsorption capacity of 27.5 mg Zn per gram of bio-adsorbent. The adsorption processes were found to follow a pseudo-second order model. The error function sum of square error indicated the Freundlich isotherm (non-linear regression) as best fit model. The obtained results are particularly interesting for material selection in wastewater treatment technologies based on contaminant adsorption.

20.
Artículo en Inglés | MEDLINE | ID: mdl-33153196

RESUMEN

This study aims to compare the sleep characteristics (structure and quality) in patients with type-2 diabetes mellitus with and without diabetic neuropathic pain (DNP), and to investigate the relationship of sensory phenotypes, anxiety, and depression with sleep quality in DNP patients. A cross-sectional study was performed in patients with type-2 diabetes mellitus and neuropathy. Patients were classified into two groups-with or without neuropathic pain-according to the "Douleur Neuropathique-4 (DN4)" scale. Sleep characteristics and quality (Medical Outcomes Study-MOS-sleep), pain phenotype (Neuropathic Pain Symptom Inventory-NPSI), mood status (Hospital Anxiety and Depression scale-HADS), pain intensity (Visual Analogue Scale-VAS), and quality of life (SF-12v2) were measured. The sample included 130 patients (65 with DNP). The mean scores in all the dimensions of the MOS-sleep scale were higher (more disturbances) in the DNP patients. Higher scores in anxiety or depression, greater intensity of pain or a higher score in the paroxysmal pain phenotype were associated with lower sleep quality in DNP patients. A shorter duration of the diabetes and lower levels of glycated hemoglobin were also associated with lower sleep quality. The results show the relationship between DNP and sleep quality, and the importance of assessing sensory phenotypes and mental comorbidities in these patients. Taking these factors into consideration, to adopt a multimodal approach is necessary to achieve better clinical results.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus , Neuralgia , Trastornos del Sueño-Vigilia , Adulto , Ansiedad/epidemiología , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuralgia/epidemiología , Neuralgia/etiología , Calidad de Vida , Sueño , Trastornos del Sueño-Vigilia/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA