Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Development ; 149(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35132995

RESUMEN

Distinct neural stem cells (NSCs) reside in different regions of the subventricular zone (SVZ) and generate multiple olfactory bulb (OB) interneuron subtypes in the adult brain. However, the molecular mechanisms underlying such NSC heterogeneity remain largely unknown. Here, we show that the basic helix-loop-helix transcription factor Olig2 defines a subset of NSCs in the early postnatal and adult SVZ. Olig2-expressing NSCs exist broadly but are most enriched in the ventral SVZ along the dorsoventral axis complementary to dorsally enriched Gsx2-expressing NSCs. Comparisons of Olig2-expressing NSCs from early embryonic to adult stages using single cell transcriptomics reveal stepwise developmental changes in their cell cycle and metabolic properties. Genetic studies further show that cross-repression contributes to the mutually exclusive expression of Olig2 and Gsx2 in NSCs/progenitors during embryogenesis, but that their expression is regulated independently from each other in adult NSCs. Finally, lineage-tracing and conditional inactivation studies demonstrate that Olig2 plays an important role in the specification of OB interneuron subtypes. Altogether, our study demonstrates that Olig2 defines a unique subset of adult NSCs enriched in the ventral aspect of the adult SVZ.


Asunto(s)
Interneuronas/metabolismo , Ventrículos Laterales/crecimiento & desarrollo , Ventrículos Laterales/metabolismo , Células-Madre Neurales/metabolismo , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Animales , Ciclo Celular/genética , Linaje de la Célula/genética , Células Cultivadas , Femenino , Técnicas de Inactivación de Genes , Ventrículos Laterales/embriología , Masculino , Ratones , Ratones Noqueados , Neurogénesis/genética , Bulbo Olfatorio/embriología , Factor de Transcripción 2 de los Oligodendrocitos/genética , Transducción de Señal/genética , Transcriptoma/genética
2.
Dev Biol ; 476: 137-147, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33775695

RESUMEN

The MAPK pathway is a major growth signal that has been implicated during the development of progenitors, neurons, and glia in the embryonic brain. Here, we show that the MAPK pathway plays an important role in the generation of distinct cell types from progenitors in the ventral telencephalon. Our data reveal that phospho-p44/42 (called p-ERK1/2) and the ETS transcription factor Etv5, both downstream effectors in the MAPK pathway, show a regional bias in expression during ventral telencephalic development, with enriched expression in the dorsal region of the LGE and ventral region of the MGE at E13.5 and E15.5. Interestingly, expression of both factors becomes more uniform in ventricular zone (VZ) progenitors by E18.5. To gain insight into the role of MAPK activity during progenitor cell development, we used a cre inducible constitutively active MEK1 allele (RosaMEK1DD/+) in combination with a ventral telencephalon enriched cre (Gsx2e-cre) or a dorsal telencephalon enriched cre (Emx1cre/+). Sustained MEK/MAPK activity in the ventral telencephalon (Gsx2e-cre; RosaMEK1DD/+) expanded dorsal lateral ganglionic eminence (dLGE) enriched genes (Gsx2 and Sp8) and oligodendrocyte progenitor cell (OPC) markers (Olig2, Pdgfrα, and Sox10), and also reduced markers in the ventral (v) LGE domain (Isl1 and Foxp1). Activation of MEK/MAPK activity in the dorsal telencephalon (Emx1cre/+; RosaMEK1DD/+) did not initially activate the expression of dLGE or OPC genes at E15.5 but ectopic expression of Gsx2 and OPC markers were observed at E18.5. These results support the idea that MAPK activity as readout by p-ERK1/2 and Etv5 expression is enriched in distinct subdomains of ventral telencephalic progenitors during development. In addition, sustained activation of the MEK/MAPK pathway in the ventral or dorsal telencephalon influences dLGE and OPC identity from progenitors.


Asunto(s)
Diferenciación Celular/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Telencéfalo/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/metabolismo , Ganglios/metabolismo , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/metabolismo , MAP Quinasa Quinasa 1/metabolismo , Ratones , Ratones Transgénicos , Células-Madre Neurales/citología , Neurogénesis/fisiología , Neuroglía/metabolismo , Neuronas/metabolismo , Factores de Transcripción SOXE/genética , Telencéfalo/embriología , Telencéfalo/fisiología , Factores de Transcripción/metabolismo
3.
Dev Biol ; 442(1): 115-126, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29990475

RESUMEN

The homeobox gene Gsx2 has previously been shown to inhibit oligodendroglial specification in dorsal lateral ganglionic eminence (dLGE) progenitors of the ventral telencephalon. The precocious specification of oligodendrocyte progenitor cells (OPCs) observed in Gsx2 mutants, however, is transient and begins to normalize by late stages of embryogenesis. Interestingly, this normalization correlates with the expansion of Gsx1, a close homolog of Gsx2, in a subset of progenitors in the Gsx2 mutant LGE. Here, we interrogated the mechanisms underlying oligodendroglial specification in Gsx2 mutants in relation to Gsx1. We found that Gsx1/2 double mutant embryos exhibit a more robust expansion of Olig2+ cells (i.e. OPCs) in the subventricular zone (SVZ) of the dLGE than Gsx2 mutants. Moreover, misexpression of Gsx1 throughout telencephalic VZ progenitors from E15 and onward resulted in a significant reduction of cortical OPCs. These results demonstrate redundant roles of Gsx1 and Gsx2 in suppressing early OPC specification in LGE VZ progenitors. However, Gsx1/2 mutants did not show a significant increase in adjacent cortical OPCs at later stages compared to Gsx2 mutants. This is likely due to reduced proliferation of OPCs within the SVZ of the Gsx1/2 double mutant LGE, suggesting a novel role for Gsx1 in expansion of migrating OPCs in the ventral telencephalon. We further investigated the glial specification mechanisms downstream of Gsx2 by generating Olig2/Gsx2 double mutants. Consistent with the known essential role for Olig2 in OPC specification, ectopic production of cortical OPCs observed in Gsx2 mutants disappeared in Olig2/Gsx2 double mutants. These mutants, however, maintained the expanded expression of gliogenic markers Zbtb20 and Bcan in the VZ of the LGE similarly to Gsx2 single mutants, suggesting that Gsx2 suppresses gliogenesis via Olig2-dependent and -independent mechanisms.


Asunto(s)
Proteínas de Homeodominio/genética , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Linaje de la Célula , Embrión de Mamíferos/metabolismo , Ganglios/metabolismo , Ganglios/fisiología , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Transgénicos , Células-Madre Neurales/citología , Neurogénesis/fisiología , Neuroglía/metabolismo , Neuroglía/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Factor de Transcripción 2 de los Oligodendrocitos , Oligodendroglía/citología , Oligodendroglía/fisiología , Células Madre/metabolismo , Células Madre/fisiología , Telencéfalo/metabolismo , Factores de Transcripción
4.
Dev Dyn ; 247(1): 222-228, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28744915

RESUMEN

BACKGROUND: The lateral ganglionic eminence (LGE) in the ventral telencephalon is a diverse progenitor domain subdivided by distinct gene expression into a dorsal region (dLGE) that gives rise to olfactory bulb and amygdalar interneurons and a ventral region (vLGE) that gives rise to striatal projection neurons. The homeobox gene, Gsx2, is an enriched marker of the LGE and is expressed in a high dorsal to low ventral gradient in the ventricular zone (VZ) as development proceeds. Aside from Gsx2, markers restricted to the VZ in the dLGE and/or vLGE remain largely unknown. RESULTS: Here, we show that the gene and protein expression of Glucocorticoid-induced transcript 1 (Glcci1) has a similar dorsal to ventral gradient of expression in the VZ as Gsx2. We found that Glcci1 gene and protein expression are reduced in Gsx2 mutants, and are increased in the cortex after early and late Gsx2 misexpression. Moreover, Glcci1 expressing cells are restricted to a subpopulation of Gsx2 positive cells on the basal side of the VZ and co-express Ascl1, but not the subventricular zone dLGE marker, Sp8. CONCLUSIONS: These findings suggest that Glcci1 is a new marker of a subpopulation of LGE VZ progenitor cells in the Gsx2 lineage. Developmental Dynamics 247:222-228, 2018. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Células-Madre Neurales/metabolismo , Receptores de Glucocorticoides/metabolismo , Telencéfalo/metabolismo , Animales , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Receptores de Glucocorticoides/genética , Telencéfalo/embriología
5.
J Neurosci ; 34(10): 3767-78, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24599474

RESUMEN

The protein tyrosine phosphatase Shp2 (PTPN11) is crucial for normal brain development and has been implicated in dorsal telencephalic neuronal and astroglia cell fate decisions. However, its roles in the ventral telencephalon and during oligodendrogenesis in the telencephalon remain largely unknown. Shp2 gain-of-function (GOF) mutations are observed in Noonan syndrome, a type of RASopathy associated with multiple phenotypes, including cardiovascular, craniofacial, and neurocognitive abnormalities. To gain insight into requirements for Shp2 (LOF) and the impact of abnormal Shp2 GOF mutations, we used a Shp2 conditional mutant allele (LOF) and a cre inducible Shp2-Q79R GOF transgenic mouse in combination with Olig2(cre/+) mice to target embryonic ventral telencephalic progenitors and the oligodendrocyte lineage. In the absence of Shp2 (LOF), neuronal cell types originating from progenitors in the ventral telencephalon were generated, but oligodendrocyte progenitor cell (OPC) generation was severely impaired. Late embryonic and postnatal Shp2 cKOs showed defects in the generation of OPCs throughout the telencephalon and subsequent reductions in white matter myelination. Conversely, transgenic expression of the Shp2 GOF Noonan syndrome mutation resulted in elevated OPC numbers in the embryo and postnatal brain. Interestingly, expression of this mutation negatively influenced myelination as mice displayed abnormal myelination and fewer myelinated axons in the white matter despite elevated OPC numbers. Increased proliferating OPCs and elevated MAPK activity were also observed during oligodendrogenesis after expression of Shp2 GOF mutation. These results support the notion that appropriate Shp2 activity levels control the number as well as the differentiation of oligodendrocytes during development.


Asunto(s)
Fibras Nerviosas Mielínicas/enzimología , Oligodendroglía/enzimología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/biosíntesis , Células Madre/enzimología , Telencéfalo/embriología , Telencéfalo/enzimología , Animales , Diferenciación Celular/fisiología , Ratones , Ratones Transgénicos , Telencéfalo/citología
6.
Stem Cells ; 31(6): 1051-63, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23404835

RESUMEN

Glioblastoma multiforme (GBM) is a life-threatening brain tumor. Accumulating evidence suggests that eradication of glioma stem-like cells (GSCs) in GBM is essential to achieve cure. The transcription factor FOXM1 has recently gained attention as a master regulator of mitotic progression of cancer cells in various organs. Here, we demonstrate that FOXM1 forms a protein complex with the mitotic kinase MELK in GSCs, leading to phosphorylation and activation of FOXM1 in a MELK kinase-dependent manner. This MELK-dependent activation of FOXM1 results in a subsequent increase in mitotic regulatory genes in GSCs. MELK-driven FOXM1 activation is regulated by the binding and subsequent trans-phosphorylation of FOXM1 by another kinase PLK1. Using mouse neural progenitor cells (NPCs), we found that transgenic expression of FOXM1 enhances, while siRNA-mediated gene silencing diminishes neurosphere formation, suggesting that FOXM1 is required for NPC growth. During tumorigenesis, FOXM1 expression sequentially increases as cells progress from NPCs, to pretumorigenic progenitors and GSCs. The antibiotic Siomycin A disrupts MELK-mediated FOXM1 signaling with a greater sensitivity in GSC compared to neural stem cell. Treatment with the first-line chemotherapy agent for GBM, Temozolomide, paradoxically enriches for both FOXM1 (+) and MELK (+) cells in GBM cells, and addition of Siomycin A to Temozolomide treatment in mice harboring GSC-derived intracranial tumors enhances the effects of the latter. Collectively, our data indicate that FOXM1 signaling through its direct interaction with MELK regulates key mitotic genes in GSCs in a PLK1-dependent manner and thus, this protein complex is a potential therapeutic target for GBM.


Asunto(s)
Neoplasias Encefálicas/patología , Factores de Transcripción Forkhead/metabolismo , Glioblastoma/patología , Células Madre Neoplásicas/patología , Células-Madre Neurales/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Dacarbazina/análogos & derivados , Dacarbazina/farmacología , Factores de Transcripción Forkhead/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Células HEK293 , Humanos , Ratones , Mitosis/efectos de los fármacos , Mitosis/genética , Mitosis/fisiología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Péptidos/farmacología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Temozolomida , Regulación hacia Arriba/efectos de los fármacos , Quinasa Tipo Polo 1
7.
Neural Dev ; 18(1): 5, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684687

RESUMEN

BACKGROUND: E-proteins encoded by Tcf3, Tcf4, and Tcf12 are class I basic helix-loop-helix (bHLH) transcription factors (TFs) that are thought to be widely expressed during development. However, their function in the developing brain, specifically in the telencephalon remains an active area of research. Our study examines for the first time if combined loss of two E-proteins (Tcf3 and Tcf12) influence distinct cell fates and oligodendrocyte development in the mouse telencephalon. METHODS: We generated Tcf3/12 double conditional knockouts (dcKOs) using Olig2Cre/+ or Olig1Cre/+ to overcome compensatory mechanisms between E-proteins and to understand the specific requirement for Tcf3 and Tcf12 in the ventral telencephalon and during oligodendrogenesis. We utilized a combination of in situ hybridization, immunohistochemistry, and immunofluorescence to address development of the telencephalon and oligodendrogenesis at embryonic and postnatal stages in Tcf3/12 dcKOs. RESULTS: We show that the E-proteins Tcf3 and Tcf12 are expressed in progenitors of the embryonic telencephalon and throughout the oligodendrocyte lineage in the postnatal brain. Tcf3/12 dcKOs showed transient defects in progenitor cells with an enlarged medial ganglionic eminence (MGE) region which correlated with reduced generation of embryonic oligodendrocyte progenitor cells (OPCs) and increased expression of MGE interneuron genes. Postnatal Tcf3/12 dcKOs showed a recovery of OPCs but displayed a sustained reduction in mature oligodendrocytes (OLs). Interestingly, Tcf4 remained expressed in the dcKOs suggesting that it cannot compensate for the loss of Tcf3 and Tcf12. Generation of Tcf3/12 dcKOs with Olig1Cre/+ avoided the MGE morphology defect caused by Olig2Cre/+ but dcKOs still exhibited reduced embryonic OPCs and subsequent reduction in postnatal OLs. CONCLUSION: Our data reveal that Tcf3 and Tcf12 play a role in controlling OPC versus cortical interneuron cell fate decisions in MGE progenitors in addition to playing roles in the generation of embryonic OPCs and differentiation of postnatal OLs in the oligodendrocyte lineage.


Asunto(s)
Encéfalo , Factores de Transcripción , Animales , Ratones , Factores de Transcripción/genética , Diferenciación Celular , Células Madre Embrionarias , Histeria , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
8.
STAR Protoc ; 2(1): 100375, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33718893

RESUMEN

Reactive astrogliosis is characterized by a profound change in astrocyte phenotype in response to all CNS injuries. Here, we present a revised in situ hybridization and immunohistochemistry (IHC) protocol to label the reactive astrocytes in the mouse brain. Several approaches for quantifying astrocyte reactivity lacked sensitivity to discriminate across the spectrum. We optimized in situ hybridization followed by IHC. We provide a staining protocol for quantitative measures of astrocyte reactivity as an independent confirmation of the magnitude of reactive gliosis. For complete details on the use and execution of this protocol, please refer to Muraleedharan et al. (2020).


Asunto(s)
Gliosis/diagnóstico por imagen , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Animales , Astrocitos/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiología , Células Cultivadas , Sistema Nervioso Central/metabolismo , Gliosis/metabolismo , Gliosis/fisiopatología , Inflamación , Ratones , Neuronas/metabolismo
9.
Front Cell Dev Biol ; 9: 673995, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34222248

RESUMEN

The leucine zipper-like transcriptional regulator 1 (Lztr1) is a BTB-Kelch domain protein involved in RAS/MAPK pathway regulation. Mutations in LZTR1 are associated with cancers and Noonan syndrome, the most common RASopathy. The expression and function of Lztr1 in the developing brain remains poorly understood. Here we show that Lztr1 is expressed in distinct regions of the telencephalon, the most anterior region of the forebrain. Lztr1 expression was robust in the cortex, amygdala, hippocampus, and oligodendrocytes in the white matter. To gain insight into the impact of Lztr1 deficiency, we generated a conditional knockout (cKO) restricted to the telencephalon using Foxg1 IREScre/+. Lztr1 cKOs are viable to postnatal stages and show reduced Lztr1 expression in the telencephalon. Interestingly, Lztr1 cKOs exhibit an increase in MAPK pathway activation in white matter regions and subsequently show an altered expression of stage-specific markers in the oligodendrocyte lineage with increased oligodendrocyte progenitor cells (OPCs) and decreased markers of oligodendrocyte differentiation. Moreover, Lztr1 cKOs also exhibit an increased expression of the astrocyte marker GFAP. These results highlight the generation of a new mouse model to study Lztr1 deficiency in the brain and reveal a novel role for Lztr1 in normal oligodendrocyte and astrocyte development in the telencephalon.

10.
Cell Rep ; 32(9): 108092, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877674

RESUMEN

Lactate is used as an energy source by producer cells or shuttled to neighboring cells and tissues. Both glucose and lactate fulfill the bioenergetic demand of neurons, the latter imported from astrocytes. The contribution of astrocytic lactate to neuronal bioenergetics and the mechanisms of astrocytic lactate production are incompletely understood. Through in vivo1H magnetic resonance spectroscopy, 13C glucose mass spectroscopy, and electroencephalographic and molecular studies, here we show that the energy sensor AMP activated protein kinase (AMPK) regulates neuronal survival in a non-cell-autonomous manner. Ampk-null mice are deficient in brain lactate and are seizure prone. Ampk deletion in astroglia, but not neurons, causes neuronal loss in both mammalian and fly brains. Mechanistically, astrocytic AMPK phosphorylated and destabilized thioredoxin-interacting protein (TXNIP), enabling expression and surface translocation of the glucose transporter GLUT1, glucose uptake, and lactate production. Ampk loss in astrocytes causes TXNIP hyperstability, GLUT1 misregulation, inadequate glucose metabolism, and neuronal loss.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Astrocitos/metabolismo , Ácido Láctico/metabolismo , Neuronas/metabolismo , Animales , Muerte Celular , Humanos , Ratones
11.
J Comp Neurol ; 525(13): 2805-2819, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28472858

RESUMEN

The striatum is the major component of the basal ganglia and is well known to play a key role in the control of motor function via balanced output from the indirect (iSPNs) and direct pathway striatal projection neurons (dSPNs). Little is known, however, about the molecular genetic mechanisms that control the formation of the iSPNs versus dSPNs. We show here that the SoxE family member, Sox8, is co-expressed with the dSPN markers, Isl1 and Ebf1, in the developing striatum. Moreover, dSPNs, as marked by Isl1-cre fate map, express Sox8 in the embryonic striatum and Sox8-EGFP BAC transgenic mice specifically reveal the direct pathway axons during development. These EGFP+ axons are first observed to reach their midbrain target, the substantia nigra pars reticulata (SNr), at E14 in the mouse with a robust connection observed already at birth. The selective expression of EGFP in dSPNs of Sox8-EGFP BAC mice is maintained at postnatal timepoints. Sox8 is known to be expressed in oligodendrocyte precursor cells (OPCs) together with other SoxE factors and we show here that the EGFP signal co-localizes with the OPC markers throughout the brain. Finally, we show that Sox8-EGFP BAC mice can be used to interrogate the altered dSPN development in Isl1 conditional mutants including aberrant axonal projections detected already at embryonic timepoints. Thus, Sox8 represents an early and specific marker of embryonic dSPNs and the Sox8-EGFP BAC transgenic mice are an excellent tool to study the development of basal ganglia circuitry.


Asunto(s)
Cuerpo Estriado , Regulación del Desarrollo de la Expresión Génica/fisiología , Vías Nerviosas/fisiología , Neuronas/metabolismo , Factores de Transcripción SOXE/metabolismo , Transducción de Señal/fisiología , Animales , Animales Recién Nacidos , Cuerpo Estriado/citología , Cuerpo Estriado/embriología , Cuerpo Estriado/crecimiento & desarrollo , Cuerpo Estriado/metabolismo , Embrión de Mamíferos , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Ratones , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA