RESUMEN
Loss of heterochromatin has been proposed as a universal mechanism of aging across different species and cell types. However, a comprehensive analysis of hematopoietic changes caused by heterochromatin loss is lacking. Moreover, there is conflict in the literature around the role of the major heterochromatic histone methyltransferase Suv39h1 in the aging process. Here, we use individual and dual deletion of Suv39h1 and Suv39h2 enzymes to examine the causal role of heterochromatin loss in hematopoietic cell development. Loss of neither Suv39h1 nor Suv39h2 individually had any effect on hematopoietic stem cell function or the development of mature lymphoid or myeloid lineages. However, deletion of both enzymes resulted in characteristic changes associated with aging such as reduced hematopoietic stem cell function, thymic involution and decreased lymphoid output with a skewing toward myeloid development, and increased memory T cells at the expense of naive T cells. These cellular changes were accompanied by molecular changes consistent with aging, including alterations in nuclear shape and increased nucleolar size. Together, our results indicate that the hematopoietic system has a remarkable tolerance for major disruptions in chromatin structure and reveal a role for Suv39h2 in depositing sufficient H3K9me3 to protect the entire hematopoietic system from changes associated with premature aging.
Asunto(s)
Envejecimiento Prematuro/patología , Diferenciación Celular , Hematopoyesis , Células Madre Hematopoyéticas/patología , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/fisiología , Metiltransferasas/fisiología , Proteínas Represoras/fisiología , Anciano , Envejecimiento Prematuro/metabolismo , Animales , Núcleo Celular/genética , Femenino , Células Madre Hematopoyéticas/metabolismo , Heterocromatina/genética , Humanos , Masculino , Ratones , Ratones Noqueados , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/patologíaRESUMEN
It has been proposed that interactions between mammalian chromosomes, or transchromosomal interactions (also known as kissing chromosomes), regulate gene expression and cell fate determination. Here we aimed to identify novel transchromosomal interactions in immune cells by high-resolution genome-wide chromosome conformation capture. Although we readily identified stable interactions in cis, and also between centromeres and telomeres on different chromosomes, surprisingly we identified no gene regulatory transchromosomal interactions in either mouse or human cells, including previously described interactions. We suggest that advances in the chromosome conformation capture technique and the unbiased nature of this approach allow more reliable capture of interactions between chromosomes than previous methods. Overall our findings suggest that stable transchromosomal interactions that regulate gene expression are not present in mammalian immune cells and that lineage identity is governed by cis, not trans chromosomal interactions.
Asunto(s)
Cromosomas de los Mamíferos/genética , Regulación de la Expresión Génica , Inmunidad Celular/genética , Mamíferos/fisiología , Animales , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromosomas de los Mamíferos/química , Cromosomas de los Mamíferos/metabolismo , ADN/química , ADN/genética , ADN/metabolismo , Citometría de Flujo , Genoma , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Conformación de Ácido Nucleico , EstereoisomerismoRESUMEN
CD52, a glycophosphatidylinositol (GPI)-anchored glycoprotein, is released in a soluble form following T cell activation and binds to the Siglec (sialic acid-binding Ig-like lectin)-10 receptor on T cells to suppress their function. We show that binding of CD52-Fc to Siglec-10 and T cell suppression requires the damage-associated molecular pattern (DAMP) protein, high-mobility group box 1 (HMGB1). CD52-Fc bound specifically to the proinflammatory Box B domain of HMGB1, and this in turn promoted binding of the CD52 N-linked glycan, in α-2,3 sialic acid linkage with galactose, to Siglec-10. Suppression of T cell function was blocked by anti-HMGB1 antibody or the antiinflammatory Box A domain of HMGB1. CD52-Fc induced tyrosine phosphorylation of Siglec-10 and was recovered from T cells complexed with HMGB1 and Siglec-10 in association with SHP1 phosphatase and the T cell receptor (TCR). Thus, soluble CD52 exerts a concerted immunosuppressive effect by first sequestering HMGB1 to nullify its proinflammatory Box B, followed by binding to the inhibitory Siglec-10 receptor, triggering recruitment of SHP1 to the intracellular immunoreceptor tyrosine-based inhibitory motif of Siglec-10 and its interaction with the TCR. This mechanism may contribute to immune-inflammatory homeostasis in pathophysiologic states and underscores the potential of soluble CD52 as a therapeutic agent.
Asunto(s)
Antígeno CD52/inmunología , Proteína HMGB1/inmunología , Lectinas/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Secuencias de Aminoácidos , Anticuerpos/farmacología , Femenino , Proteína HMGB1/antagonistas & inhibidores , Humanos , Masculino , Dominios Proteicos , Proteína Tirosina Fosfatasa no Receptora Tipo 6/inmunologíaRESUMEN
MicroRNAs (miRNAs) regulate T cell development and function and the disruption of miRNAs in natural regulatory CD4(+) FOXP3(+) T cells (nTreg) leads to autoimmune disease in mice. To investigate miRNA expression in relation to autoimmune disease risk in humans we sequenced them in purified CD4(+) T cell subsets from individuals at high risk of type 1 diabetes (pre-T1D), as well as other healthy individuals. Differences in miRNA expression patterns were observed between specific T cell subsets and, within subsets, between pre-T1D and healthy individuals. Compared to healthy, naive CD4(+) T cells in pre-T1D displayed 32 differentially expressed miRNAs, potentially a template for altered miRNA expression in effector memory T cells in T1D. Naive nTreg in pre-T1D displayed two differentially expressed miRNAs, Let-7c and miR-15a. In contrast, nTreg activated in vivo displayed a large number of differentially expressed miRNAs, revealing a pro-inflammatory and FOXP3-repressive signature. Differential expression of specific miRNAs was also a signpost to altered T cell function. For example, in pre-T1D, increased expression of miR-26a in nTreg activated in vivo or in vitro was associated with decreased expression of its target, the histone methyltransferase EZH2. Chemical inhibition of EZH2 decreased the number of activated naïve nTreg and their expression of nTreg signature genes FOXP3 and TIGIT. Our findings demonstrate that miRNAs differentially expressed in CD4(+) T cell subsets are markers of risk and T cell dysfunction in T1D.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , MicroARNs/genética , Biomarcadores , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Biblioteca de Genes , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Activación de Linfocitos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismoRESUMEN
Differentiation of naïve CD4(+) T cells into effector (Th1, Th2, and Th17) and induced regulatory (iTreg) T cells requires lineage-specifying transcription factors and epigenetic modifications that allow appropriate repression or activation of gene transcription. The epigenetic silencing of cytokine genes is associated with the repressive H3K27 trimethylation mark, mediated by the Ezh2 or Ezh1 methyltransferase components of the polycomb repressive complex 2 (PRC2). Here we show that silencing of the Ifng, Gata3, and Il10 loci in naïve CD4(+) T cells is dependent on Ezh2. Naïve CD4(+) T cells lacking Ezh2 were epigenetically primed for overproduction of IFN-γ in Th2 and iTreg and IL-10 in Th2 cells. In addition, deficiency of Ezh2 accelerated effector Th cell death via death receptor-mediated extrinsic and intrinsic apoptotic pathways, confirmed in vivo for Ezh2-null IFN-γ-producing CD4(+) and CD8(+) T cells responding to Listeria monocytogenes infection. These findings demonstrate the key role of PRC2/Ezh2 in differentiation and survival of peripheral T cells and reveal potential immunotherapeutic targets.
Asunto(s)
Apoptosis/inmunología , Diferenciación Celular/inmunología , Silenciador del Gen/inmunología , Complejo Represivo Polycomb 2/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Supervivencia Celular/inmunología , Proteína Potenciadora del Homólogo Zeste 2 , Femenino , Humanos , Interferón gamma/inmunología , Interleucina-10/inmunología , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Listeriosis/patología , Masculino , Ratones , Linfocitos T Colaboradores-Inductores/citologíaRESUMEN
Regulatory T cells (Treg) prevent the emergence of autoimmune disease. Prototypic natural Treg (nTreg) can be reliably identified by demethylation at the Forkhead-box P3 (FOXP3) locus. To explore the methylation landscape of nTreg, we analyzed genome-wide methylation in human naive nTreg (rTreg) and conventional naive CD4(+) T cells (Naive). We detected 2315 differentially methylated cytosine-guanosine dinucleotides (CpGs) between these 2 cell types, many of which clustered into 127 regions of differential methylation (RDMs). Activation changed the methylation status of 466 CpGs and 18 RDMs in Naive but did not alter DNA methylation in rTreg. Gene-set testing of the 127 RDMs showed that promoter methylation and gene expression were reciprocally related. RDMs were enriched for putative FOXP3-binding motifs. Moreover, CpGs within known FOXP3-binding regions in the genome were hypomethylated. In support of the view that methylation limits access of FOXP3 to its DNA targets, we showed that increased expression of the immune suppressive receptor T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT), which delineated Treg from activated effector T cells, was associated with hypomethylation and FOXP3 binding at the TIGIT locus. Differential methylation analysis provides insight into previously undefined human Treg signature genes and their mode of regulation.
Asunto(s)
Metilación de ADN , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Linfocitos T Reguladores/citología , Secuencias de Aminoácidos , Islas de CpG , Epigénesis Genética , Factores de Transcripción Forkhead/metabolismo , Genoma Humano , Humanos , Inmunofenotipificación , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Regiones Promotoras Genéticas , Unión Proteica , Estructura Terciaria de ProteínaRESUMEN
Aims: Self-collection of a blood sample for autoantibody testing has potential to facilitate screening for type 1 diabetes risk. We sought to determine the feasibility and acceptability of this approach and the performance of downstream antibody assays. Methods: People living with type 1 diabetes and their family members (N = 97) provided paired capillary blood spot and serum samples collected, respectively, by themselves and a health worker. They provided feedback on the ease, convenience, and painfulness of blood spot collection. Islet antibodies were measured in blood spots by antibody detection by agglutination PCR (ADAP) or multiplex enzyme-linked immunoassay (ELISA), and in serum by radioimmunoassay (RIA) or ELISA. Results: Using serum RIA and ELISA to define antibody status, 50 antibody-negative (Abneg) and 47 antibody-positive (Abpos) participants enrolled, of whom 43 and 47, respectively, returned testable blood spot samples. The majority indicated that self-collection was easier, more convenient, and less painful than formal venesection. The sensitivity and specificity for detection of Abpos by blood spot were, respectively, 85% and 98% for ADAP and 87% and 100% for multiplex ELISA. The specificities by ADAP for each of the four antigen specificities ranged from 98% to 100% and areas under the receiver operator curve from 0.841 to 0.986. Conclusions: Self-collected blood spot sampling is preferred over venesection by research participants. ADAP and multiplex ELISA are highly specific assays for islet antibodies in blood spots with acceptable performance for use alone or in combination to facilitate screening for type 1 diabetes risk. Clinical Trial Registration number: ACTRN12620000510943.
Asunto(s)
Diabetes Mellitus Tipo 1 , Humanos , Estudios de Factibilidad , Tamizaje Masivo , Autoanticuerpos , Sensibilidad y EspecificidadRESUMEN
Detection of human Ag-specific T cells is limited by sensitivity and blood requirements. As dendritic cells (DCs) can potently stimulate T cells, we hypothesized that their induction in PBMCs in situ could link Ag processing and presentation to Ag-specific T-cell activation. To this end, unfractionated PBMCs (fresh or frozen) or whole blood were incubated for 48 hours with protein or peptide Ag together with different DC-activating agents to rapidly and sequentially induce, pulse, and mature DCs. DC activation was therefore lined up with Ag recognition by neighboring T cells, thus telescoping the sequential steps of T-cell activation. Efficient processing of protein Ags made prior knowledge of epitopes and HLA restrictions dispensable. While reducing stimulation time, manipulation and blood requirements, in situ DC induction specifically amplified Ag-specific T-cell responses (cytokine secretion, proliferation, CD137/CD154 up-regulation, and binding of peptide-HLA multimers). IL-1ß, although released by DCs, was also secreted in an Ag-specific fashion, thus providing an indirect biomarker of T-cell responses. These accelerated cocultured DC (acDC) assays offered a sensitive means with which to evaluate T-cell responses to viral and melanoma Ag vaccination, and may therefore find application for immune monitoring in viral, tumor, autoimmune, and transplantation settings.
Asunto(s)
Antígenos , Células Dendríticas/inmunología , Linfocitos T/inmunología , Animales , Presentación de Antígeno , Antígenos/administración & dosificación , Vacunas contra el Cáncer/administración & dosificación , Proliferación Celular , Técnicas de Cocultivo , Citocinas/biosíntesis , Citocinas/sangre , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Epítopos/administración & dosificación , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Antígenos HLA/administración & dosificación , Humanos , Interleucina-4/farmacología , Activación de Linfocitos , Melanoma/inmunología , Melanoma/terapia , Antígenos Específicos del Melanoma/administración & dosificación , Ratones , Proteínas Recombinantes , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , VacunaciónRESUMEN
Insulin-dependent or type 1 diabetes (T1D) is a paradigm for prevention of autoimmune disease: Pancreatic ß-cell autoantigens are defined, at-risk individuals can be identified before the onset of symptoms, and autoimmune diabetes is preventable in rodent models. Intervention in asymptomatic individuals before or after the onset of subclinical islet autoimmunity places a premium on safety, a requirement met only by lifestyle-dietary approaches or autoantigen-based vaccination to induce protective immune tolerance. Insulin is the key driver of autoimmune ß-cell destruction in the nonobese diabetic (NOD) mouse model of T1D and is an early autoimmune target in children at risk for T1D. In the NOD mouse, mucosal administration of insulin induces regulatory T cells that protect against diabetes. The promise of autoantigen-specific vaccination in humans has yet to be realized, but recent trials of oral and nasal insulin vaccination in at-risk humans provide grounds for cautious optimism.
Asunto(s)
Autoantígenos/inmunología , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/prevención & control , Vacunación , Animales , Glutamato Descarboxilasa/inmunología , Humanos , Insulina/inmunología , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
Regulatory T cells (Tregs) have potential for the treatment of autoimmune diseases and graft rejection. Antigen specificity and functional stability are considered critical for their therapeutic efficacy. In this study, expansion of human Tregs in the presence of porcine PBMCs (xenoantigen-expanded Tregs, Xn-Treg) allowed the selection of a distinct Treg subset, coexpressing the activation/memory surface markers HLA-DR and CD27 with enhanced proportion of FOXP3+Helios+ Tregs. Compared with their unsorted and HLA-DR+CD27+ double-positive (DP) cell-depleted Xn-Treg counterparts, HLA-DR+CD27+ DP-enriched Xn-Tregs expressed upregulated Treg function markers CD95 and ICOS with enhanced suppression of xenogeneic but not polyclonal mixed lymphocyte reaction. They also had less Treg-specific demethylation in the region of FOXP3 and were more resistant to conversion to effector cells under inflammatory conditions. Adoptive transfer of porcine islet recipient NOD/SCID IL2 receptor γ-/- mice with HLA-DR+CD27+ DP-enriched Xn-Tregs in a humanized mouse model inhibited porcine islet graft rejection mediated by 25-fold more human effector cells. The prolonged graft survival was associated with enhanced accumulation of FOXP3+ Tregs and upregulated expression of Treg functional genes, IL10 and cytotoxic T lymphocyte antigen 4, but downregulated expression of effector Th1, Th2, and Th17 cytokine genes, within surviving grafts. Collectively, human HLA-DR+CD27+ DP-enriched Xn-Tregs expressed a specific regulatory signature that enabled identification and isolation of antigen-specific and functionally stable Tregs with potential as a Treg-based therapy.
Asunto(s)
Antígenos HLA-DR , Linfocitos T Reguladores , Ratones , Humanos , Animales , Porcinos , Ratones SCID , Ratones Endogámicos NOD , Antígenos HLA-DR/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismoRESUMEN
Type 1 diabetes in children is heralded by a preclinical phase defined by circulating autoantibodies to pancreatic islet antigens. How islet autoimmunity is initiated and then progresses to clinical diabetes remains poorly understood. Only one study has reported gene expression in specific immune cells of children at risk associated with progression to islet autoimmunity. We analyzed gene expression with RNA sequencing in CD4+ and CD8+ T cells, natural killer (NK) cells, and B cells, and chromatin accessibility by assay for transposase-accessible chromatin sequencing (ATAC-seq) in CD4+ T cells, in five genetically at risk children with islet autoantibodies who progressed to diabetes over a median of 3 years ("progressors") compared with five children matched for sex, age, and HLA-DR who had not progressed ("nonprogressors"). In progressors, differentially expressed genes (DEGs) were largely confined to CD4+ T cells and enriched for cytotoxicity-related genes/pathways. Several top-ranked DEGs were validated in a semi-independent cohort of 13 progressors and 11 nonprogressors. Flow cytometry confirmed that progression was associated with expansion of CD4+ cells with a cytotoxic phenotype. By ATAC-seq, progression was associated with reconfiguration of regulatory chromatin regions in CD4+ cells, some linked to differentially expressed cytotoxicity-related genes. Our findings suggest that cytotoxic CD4+ T cells play a role in promoting progression to type 1 diabetes.
Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Cromatina/química , Citotoxicidad Inmunológica/genética , Diabetes Mellitus Tipo 1/inmunología , Progresión de la Enfermedad , Regulación de la Expresión Génica , Adolescente , Autoinmunidad/genética , Linfocitos B/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/ultraestructura , Linfocitos T CD8-positivos/metabolismo , Niño , Preescolar , Diabetes Mellitus Tipo 1/genética , Predisposición Genética a la Enfermedad , Humanos , Islotes Pancreáticos/inmunología , Células Asesinas Naturales/metabolismo , Análisis de Secuencia de ARNRESUMEN
AIMS: Studies of the gut microbiome have focused on its bacterial composition. We aimed to characterize the gut fungal microbiome (mycobiome) across pregnancy in women with and without type 1 diabetes. METHODS: Faecal samples (n = 162) were collected from 70 pregnant women (45 with and 25 without type 1 diabetes) across all trimesters. Fungi were analysed by internal transcribed spacer 1 amplicon sequencing. Markers of intestinal inflammation (faecal calprotectin) and intestinal epithelial integrity (serum intestinal fatty acid binding protein; I-FABP), and serum antibodies to Saccharomyces cerevisiae (ASCA) were measured. RESULTS: Women with type 1 diabetes had decreased fungal alpha diversity by the third trimester, associated with an increased abundance of Saccharomyces cerevisiae that was inversely related to the abundance of the anti-inflammatory butyrate-producing bacterium Faecalibacterium prausnitzii. Women with type 1 diabetes had higher concentrations of calprotectin, I-FABP and ASCA. CONCLUSIONS: Women with type 1 diabetes exhibit a shift in the gut mycobiome across pregnancy associated with evidence of gut inflammation and impaired intestinal barrier function. The relevance of these findings to the higher rate of pregnancy complications in type 1 diabetes warrants further study.
Asunto(s)
Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Micobioma , Heces/microbiología , Femenino , Microbioma Gastrointestinal/genética , Humanos , Inflamación , Embarazo , Saccharomyces cerevisiaeRESUMEN
Remodelling of chromatin architecture is known to regulate gene expression and has been well characterized in cell lineage development but less so in response to cell perturbation. Activation of T cells, which triggers extensive changes in transcriptional programs, serves as an instructive model to elucidate how changes in chromatin architecture orchestrate gene expression in response to cell perturbation. To characterize coordinate changes at different levels of chromatin architecture, we analyzed chromatin accessibility, chromosome conformation and gene expression in activated human T cells. T cell activation was characterized by widespread changes in chromatin accessibility and interactions that were shared between activated CD4+ and CD8+ T cells, and with the formation of active regulatory regions associated with transcription factors relevant to T cell biology. Chromatin interactions that increased and decreased were coupled, respectively, with up- and down-regulation of corresponding target genes. Furthermore, activation was associated with disruption of long-range chromatin interactions and with partitioning of topologically associating domains (TADs) and remodelling of their TAD boundaries. Newly formed/strengthened TAD boundaries were associated with higher nucleosome occupancy and lower accessibility, linking changes in lower and higher order chromatin architecture. T cell activation exemplifies coordinate multi-level remodelling of chromatin underlying gene transcription.
Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Cromatina/química , Cromatina/genética , Regulación del Desarrollo de la Expresión Génica/genética , Activación de Linfocitos/genética , Linfocitos T/inmunología , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Células Cultivadas , Humanos , Masculino , Nucleosomas/genética , Factores de Transcripción , Transcripción Genética/genéticaRESUMEN
The proximity pattern and radial distribution of chromosome territories within spherical nuclei are random and non-random, respectively. Whether this distribution pattern is conserved in the partitioned or lobed nuclei of polymorphonuclear cells is unclear. Here we use chromosome paint technology to examine the chromosome territories of all 46 chromosomes in hundreds of single human neutrophils - an abundant and famously polymorphonuclear immune cell. By comparing the distribution of chromosomes to randomly shuffled controls and validating with orthogonal chromosome conformation capture technology, we show for the first time that human chromosomes randomly distribute to neutrophil nuclear lobes, while maintaining a non-random radial distribution within these lobes. Furthermore, we demonstrate that chromosome length correlates with three-dimensional volume not only in neutrophils but other human immune cells. This work demonstrates that chromosomes are largely passive passengers during the neutrophil lobing process but are able to subsequently maintain their macro-level organization within lobes.
RESUMEN
Steroid hormones induce changes in gene expression by binding to intracellular receptors that then translocate to the nucleus. Steroids have also been shown to rapidly modify cell function by binding to surface membrane receptors. We identified a candidate steroid membrane receptor, the progestin and adipoQ receptor (PAQR) 10, a member of the PAQR family, in a screen for genes differentially expressed in mouse pancreatic beta-cells. PAQR10 gene expression was tissue restricted compared with other PAQRs. In the mouse embryonic pancreas, PAQR10 expression mirrored development of the endocrine lineage, with PAQR10 protein expression confined to endocrine islet-duct structures in the late embryo and neonate. In the adult mouse pancreas, PAQR10 was expressed exclusively in islet cells except for its reappearance in ducts of maternal islets during pregnancy. PAQR10 has a predicted molecular mass of 29 kDa, comprises seven transmembrane domains, and, like other PAQRs, is predicted to have an intracellular N-terminus and an extracellular C-terminus. In silico analysis indicated that three members of the PAQR family, PAQRs 9, 10, and 11, have a candidate mitochondrial localization signal (MLS) at the N-terminus. We showed that PAQR10 has a functional N-terminal MLS and that the native protein localizes to mitochondria. PAQR10 is structurally related to some bacterial hemolysins, pore-forming virulence factors that target mitochondria and regulate apoptosis. We propose that PAQR10 may act at the level of the mitochondrion to regulate pancreatic endocrine cell development/survival.
Asunto(s)
Células Secretoras de Insulina/metabolismo , Mitocondrias/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores de Progesterona/metabolismo , Animales , Northern Blotting , Línea Celular , Expresión Génica , Ratones , Microscopía Confocal , Páncreas/metabolismo , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
OBJECTIVES: The side population (SP) contains cells with stem cell/progenitor properties. Previously, we observed that the mouse pancreas SP expanded after pancreatic injury. We aimed to characterize the SP in human pancreas as a potential source of stem cells. METHODS: Human organ donor pancreata were fractionated into islets and exocrine tissue, enriched by tissue culture and dispersed into single cells. Cells were phenotyped by flow cytometry, and the SP was defined by efflux of fluorescent dye Hoechst 33342 visualized by ultraviolet excitation. Cells were flow sorted, and their colony-forming potential measured on feeder cells in culture. RESULTS: An SP was identified in islet and exocrine cells from human organ donors: 2 with type 1 diabetes, 3 with type 2 diabetes, and 28 without diabetes. Phenotyping revealed that exocrine SP cells had an epithelial origin, were enriched for carbohydrate antigen 19-9 ductal cells expressing stem cell markers CD133 and CD26, and had greater colony-forming potential than non-SP cells. The exocrine SP was increased in a young adult with type 1 diabetes and ongoing islet autoimmunity. CONCLUSIONS: The pancreatic exocrine SP is a potential reservoir of adult stem/progenitor cells, consistent with previous evidence that such cells are duct-derived and express CD133.
Asunto(s)
Células Madre Adultas/citología , Separación Celular/métodos , Páncreas/citología , Células de Población Lateral/citología , Antígeno AC133/metabolismo , Adolescente , Adulto , Células Madre Adultas/metabolismo , Anciano , Antígeno CA-19-9/metabolismo , Células Cultivadas , Femenino , Humanos , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Masculino , Persona de Mediana Edad , Páncreas Exocrino/citología , Páncreas Exocrino/metabolismo , Células de Población Lateral/metabolismo , Adulto JovenRESUMEN
How T cells differentiate in the neonate may critically determine the ability of the infant to cope with infections, respond to vaccines and avert allergies. Previously, we found that naïve cord blood CD4+ T cells differentiated toward an IL-4-expressing phenotype when activated in the presence of TGF-ß and monocyte-derived inflammatory cytokines, the latter are more highly secreted by infants who developed food allergy. Here, we show that in the absence of IL-2 or IL-12, naïve cord blood CD8+ T cells have a natural propensity to differentiate into IL-4-producing non-classic TC2 cells when they are activated alone, or in the presence of TGF-ß and/or inflammatory cytokines. Mechanistically, non-classic TC2 development is associated with decreased expression of IL-2 receptor alpha (CD25) and glycolysis, and increased fatty acid metabolism and caspase-dependent cell death. Consequently, the short chain fatty acid, sodium propionate (NaPo), enhanced IL-4 expression, but exogenous IL-2 or pan-caspase inhibition prevented IL-4 expression. In children with endoscopically and histologically confirmed non-inflammatory bowel disease and non-infectious pediatric idiopathic colitis, the presence of TGF-ß, NaPo, and IL-1ß or TNF-α promoted TC2 differentiation in vitro. In vivo, colonic mucosa of children with colitis had significantly increased expression of IL-4 in CD8+ T cells compared with controls. In addition, activated caspase-3 and IL-4 were co-expressed in CD8+ T cells in the colonic mucosa of children with colitis. Thus, in the context of colonic inflammation and limited IL-2 signaling, CD8+ T cells differentiate into non-classic TC2 that may contribute to the pathology of inflammatory/allergic diseases in children.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/inmunología , Colitis Ulcerosa/inmunología , Interleucina-4/metabolismo , Biopsia , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Caspasa 3/metabolismo , Inhibidores de Caspasas/farmacología , Niño , Preescolar , Colitis Ulcerosa/diagnóstico por imagen , Colitis Ulcerosa/patología , Colon/diagnóstico por imagen , Colon/inmunología , Colon/patología , Colonoscopía , Ácidos Grasos/metabolismo , Femenino , Sangre Fetal/citología , Sangre Fetal/inmunología , Humanos , Lactante , Interleucina-2/inmunología , Interleucina-2/metabolismo , Subunidad alfa del Receptor de Interleucina-2/inmunología , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Interleucina-4/inmunología , Activación de Linfocitos/inmunología , MasculinoRESUMEN
The homeodomain transcription factor Pdx1 is essential for pancreas development. To investigate the role of Pdx1 in the adult pancreas, we employed a mouse model in which transcription of Pdx1 could be reversibly repressed by administration of doxycycline. Repression of Pdx1 in adult mice impaired expression of insulin and glucagon, leading to diabetes within 14 days. Pdx1 repression was associated with increased cell proliferation predominantly in the exocrine pancreas and upregulation of genes implicated in pancreas regeneration. Following withdrawal of doxycycline and derepression of Pdx1, normoglycemia was restored within 28 days; during this period, Pdx1(+)/Ins(+) and Pdx(+)/Ins(-) cells were observed in association with the duct epithelia. These findings confirm that Pdx1 is required for beta-cell function in the adult pancreas and indicate that in the absence of Pdx1 expression, a regenerative program is initiated with the potential for Pdx1-dependent beta-cell neogenesis.
Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas de Homeodominio/biosíntesis , Islotes Pancreáticos/fisiología , Transactivadores/biosíntesis , Animales , Diabetes Mellitus Experimental , Doxiciclina/farmacología , Perfilación de la Expresión Génica , Insulina/biosíntesis , Islotes Pancreáticos/efectos de los fármacos , Ratones , Ratones Noqueados , Ratones Transgénicos , Regeneración/fisiologíaRESUMEN
Food allergy is a major health burden in early childhood. Infants who develop food allergy display a proinflammatory immune profile in cord blood, but how this is related to interleukin-4 (IL-4)/T helper 2 (T(H)2)-type immunity characteristic of allergy is unknown. In a general population-derived birth cohort, we found that in infants who developed food allergy, cord blood displayed a higher monocyte to CD4(+) T cell ratio and a lower proportion of natural regulatory T cell (nT(reg)) in relation to duration of labor. CD14(+) monocytes of food-allergic infants secreted higher amounts of inflammatory cytokines (IL-1ß, IL-6, and tumor necrosis factor-α) in response to lipopolysaccharide. In the presence of the mucosal cytokine transforming growth factor-ß, these inflammatory cytokines suppressed IL-2 expression by CD4(+) T cells. In the absence of IL-2, inflammatory cytokines decreased the number of activated nT(reg) and diverted the differentiation of both nT(reg) and naïve CD4(+) T cells toward an IL-4-expressing nonclassical TH2 phenotype. These findings provide a mechanistic explanation for susceptibility to food allergy in infants and suggest anti-inflammatory approaches to its prevention.