Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Ecol ; 32(13): 3483-3496, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37073620

RESUMEN

Phenotypic plasticity can play an important role in the ability of animals to tolerate environmental stress, but the nature and magnitude of plastic responses are often specific to the developmental timing of exposure. Here, we examine changes in gene expression in the diaphragm of highland deer mice (Peromyscus maniculatus) in response to hypoxia exposure at different stages of development. In highland deer mice, developmental plasticity in diaphragm function may mediate changes in several respiratory traits that influence aerobic metabolism and performance under hypoxia. We generated RNAseq data from diaphragm tissue of adult deer mice exposed to (1) life-long hypoxia (before conception to adulthood), (2) post-natal hypoxia (birth to adulthood), (3) adult hypoxia (6-8 weeks only during adulthood) or (4) normoxia. We found five suites of co-regulated genes that are differentially expressed in response to hypoxia, but the patterns of differential expression depend on the developmental timing of exposure. We also identified four transcriptional modules that are associated with important respiratory traits. Many of the genes in these transcriptional modules bear signatures of altitude-related selection, providing an indirect line of evidence that observed changes in gene expression may be adaptive in hypoxic environments. Our results demonstrate the importance of developmental stage in determining the phenotypic response to environmental stressors.


Asunto(s)
Hipoxia , Peromyscus , Animales , Peromyscus/genética , Hipoxia/metabolismo , Respiración , Adaptación Fisiológica/genética , Altitud
2.
J Exp Biol ; 225(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34913467

RESUMEN

Physiological systems often have emergent properties but the effects of genetic variation on physiology are often unknown, which presents a major challenge to understanding the mechanisms of phenotypic evolution. We investigated whether genetic variants in haemoglobin (Hb) that contribute to high-altitude adaptation in deer mice (Peromyscus maniculatus) are associated with evolved changes in the control of breathing. We created F2 inter-population hybrids of highland and lowland deer mice to test for phenotypic associations of α- and ß-globin variants on a mixed genetic background. Hb genotype had expected effects on Hb-O2 affinity that were associated with differences in arterial O2 saturation in hypoxia. However, high-altitude genotypes were also associated with breathing phenotypes that should contribute to enhancing O2 uptake in hypoxia. Mice with highland α-globin exhibited a more effective breathing pattern, with highland homozygotes breathing deeper but less frequently across a range of inspired O2, and this difference was comparable to the evolved changes in breathing pattern in deer mouse populations native to high altitude. The ventilatory response to hypoxia was augmented in mice that were homozygous for highland ß-globin. The association of globin variants with variation in breathing phenotypes could not be recapitulated by acute manipulation of Hb-O2 affinity, because treatment with efaproxiral (a synthetic drug that acutely reduces Hb-O2 affinity) had no effect on breathing in normoxia or hypoxia. Therefore, adaptive variation in Hb may have unexpected effects on physiology in addition to the canonical function of this protein in circulatory O2 transport.


Asunto(s)
Altitud , Peromyscus , Animales , Variación Genética , Hemoglobinas/genética , Hipoxia/genética , Ratones , Oxígeno/metabolismo , Peromyscus/genética , Respiración
3.
BMC Biol ; 19(1): 128, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158035

RESUMEN

BACKGROUND: Complex organismal traits are often the result of multiple interacting genes and sub-organismal phenotypes, but how these interactions shape the evolutionary trajectories of adaptive traits is poorly understood. We examined how functional interactions between cardiorespiratory traits contribute to adaptive increases in the capacity for aerobic thermogenesis (maximal O2 consumption, V̇O2max, during acute cold exposure) in high-altitude deer mice (Peromyscus maniculatus). We crossed highland and lowland deer mice to produce F2 inter-population hybrids, which expressed genetically based variation in hemoglobin (Hb) O2 affinity on a mixed genetic background. We then combined physiological experiments and mathematical modeling of the O2 transport pathway to examine the links between cardiorespiratory traits and V̇O2max. RESULTS: Physiological experiments revealed that increases in Hb-O2 affinity of red blood cells improved blood oxygenation in hypoxia but were not associated with an enhancement in V̇O2max. Sensitivity analyses performed using mathematical modeling showed that the influence of Hb-O2 affinity on V̇O2max in hypoxia was contingent on the capacity for O2 diffusion in active tissues. CONCLUSIONS: These results suggest that increases in Hb-O2 affinity would only have adaptive value in hypoxic conditions if concurrent with or preceded by increases in tissue O2 diffusing capacity. In high-altitude deer mice, the adaptive benefit of increasing Hb-O2 affinity is contingent on the capacity to extract O2 from the blood, which helps resolve controversies about the general role of hemoglobin function in hypoxia tolerance.


Asunto(s)
Altitud , Peromyscus , Animales , Hemoglobinas , Hipoxia/genética , Oxígeno , Termogénesis
4.
Am J Physiol Regul Integr Comp Physiol ; 321(6): R869-R878, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34704846

RESUMEN

In the developing embryos of egg-laying vertebrates, O2 flux takes place across a fixed surface area of the eggshell and the chorioallantoic membrane. In the case of crocodilians, the developing embryo may experience a decrease in O2 flux when the nest becomes hypoxic, which may cause compensatory adjustments in blood O2 transport. However, whether the switch from embryonic to adult hemoglobin isoforms (isoHbs) plays some role in these adjustments is unknown. Here, we provide a detailed characterization of the developmental switch of isoHb synthesis in the American alligator, Alligator mississippiensis. We examined the in vitro functional properties and subunit composition of purified alligator isoHbs expressed during embryonic developmental stages in normoxia and hypoxia (10% O2). We found distinct patterns of isoHb expression in alligator embryos at different stages of development, but these patterns were not affected by hypoxia. Specifically, alligator embryos expressed two main isoHbs: HbI, prevalent at early developmental stages, with a high O2 affinity and high ATP sensitivity, and HbII, prevalent at later stages and identical to the adult protein, with a low O2 affinity and high CO2 sensitivity. These results indicate that whole blood O2 affinity is mainly regulated by ATP in the early embryo and by CO2 and bicarbonate from the late embryo until adult life, but the developmental regulation of isoHb expression is not affected by hypoxia exposure.


Asunto(s)
Caimanes y Cocodrilos/embriología , Embrión no Mamífero/metabolismo , Hemoglobinas/metabolismo , Proteínas de Reptiles/metabolismo , Adenosina Trifosfato/sangre , Animales , Dióxido de Carbono/sangre , Desarrollo Embrionario , Oxígeno/sangre , Isoformas de Proteínas
5.
J Exp Biol ; 224(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34338300

RESUMEN

Crocodilians are unique among vertebrates in that their hemoglobin (Hb) O2 binding is allosterically regulated by bicarbonate, which forms in red blood cells upon hydration of CO2. Although known for decades, this remarkable mode of allosteric control has not yet been experimentally verified with direct evidence of bicarbonate binding to crocodilian Hb, probably because of confounding CO2-mediated effects. Here, we provide the first quantitative analysis of the separate allosteric effects of CO2 and bicarbonate on purified Hb of the spectacled caiman (Caiman crocodilus). Using thin-layer gas diffusion chamber and Tucker chamber techniques, we demonstrate that both CO2 and bicarbonate bind to Hb with high affinity and strongly decrease O2 saturation of Hb. We propose that both effectors bind to an unidentified positively charged site containing a reactive amino group in the low-O2 affinity T conformation of Hb. These results provide the first experimental evidence that bicarbonate binds directly to crocodilian Hb and promotes O2 delivery independently of CO2. Using the gas diffusion chamber, we observed similar effects in Hbs of a phylogenetically diverse set of other caiman, alligator and crocodile species, suggesting that the unique mode of allosteric regulation by CO2 and bicarbonate evolved >80-100 million years ago in the common ancestor of crocodilians. Our results show a tight and unusual linkage between O2 and CO2 transport in the blood of crocodilians, where the build-up of erytrocytic CO2 and bicarbonate ions during breath-hold diving or digestion facilitates O2 delivery, while Hb desaturation facilitates CO2 transport as protein-bound CO2 and bicarbonate.


Asunto(s)
Caimanes y Cocodrilos , Regulación Alostérica , Animales , Bicarbonatos , Dióxido de Carbono , Hemoglobinas , Oxígeno
6.
Biochem J ; 477(19): 3839-3850, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32936244

RESUMEN

In vertebrate haemoglobin (Hb), the NH2-terminal residues of the α- and ß-chain subunits are thought to play an important role in the allosteric binding of protons (Bohr effect), CO2 (as carbamino derivatives), chloride ions, and organic phosphates. Accordingly, acetylation of the α- and/or ß-chain NH2-termini may have significant effects on the oxygenation properties of Hb. Here we investigate the effect of NH2-terminal acetylation by using a newly developed expression plasmid system that enables us to compare recombinantly expressed Hbs that are structurally identical except for the presence or absence of NH2-terminal acetyl groups. Experiments with native and recombinant Hbs of representative vertebrates reveal that NH2-terminal acetylation does not impair the Bohr effect, nor does it significantly diminish responsiveness to allosteric cofactors, such as chloride ions or organic phosphates. These results suggest that observed variation in the oxygenation properties of vertebrate Hbs is principally explained by amino acid divergence in the constituent globin chains rather than post-translational modifications of the globin chain NH2-termini.


Asunto(s)
Hemoglobinas/química , Oxígeno/química , Acetilación , Regulación Alostérica , Hemoglobinas/genética , Hemoglobinas/metabolismo , Humanos , Oxígeno/metabolismo
7.
PLoS Genet ; 14(4): e1007331, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29608560

RESUMEN

During the adaptive evolution of a particular trait, some selectively fixed mutations may be directly causative and others may be purely compensatory. The relative contribution of these two classes of mutation to adaptive phenotypic evolution depends on the form and prevalence of mutational pleiotropy. To investigate the nature of adaptive substitutions and their pleiotropic effects, we used a protein engineering approach to characterize the molecular basis of hemoglobin (Hb) adaptation in the high-flying bar-headed goose (Anser indicus), a hypoxia-tolerant species renowned for its trans-Himalayan migratory flights. To test the effects of observed substitutions on evolutionarily relevant genetic backgrounds, we synthesized all possible genotypic intermediates in the line of descent connecting the wildtype bar-headed goose genotype with the most recent common ancestor of bar-headed goose and its lowland relatives. Site-directed mutagenesis experiments revealed one major-effect mutation that significantly increased Hb-O2 affinity on all possible genetic backgrounds. Two other mutations exhibited smaller average effect sizes and less additivity across backgrounds. One of the latter mutations produced a concomitant increase in the autoxidation rate, a deleterious side-effect that was fully compensated by a second-site mutation at a spatially proximal residue. The experiments revealed three key insights: (i) subtle, localized structural changes can produce large functional effects; (ii) relative effect sizes of function-altering mutations may depend on the sequential order in which they occur; and (iii) compensation of deleterious pleiotropic effects may play an important role in the adaptive evolution of protein function.


Asunto(s)
Adaptación Fisiológica/genética , Migración Animal , Vuelo Animal , Gansos/genética , Hemoglobinas/genética , Altitud , Animales , Evolución Molecular , Gansos/clasificación , Hemoglobinas/química , Hemoglobinas/metabolismo , Hipoxia , Modelos Moleculares , Mutación , Oxígeno/metabolismo , Filogenia , Conformación Proteica , Especificidad de la Especie
8.
Proc Natl Acad Sci U S A ; 115(8): 1865-1870, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29432191

RESUMEN

When different species experience similar selection pressures, the probability of evolving similar adaptive solutions may be influenced by legacies of evolutionary history, such as lineage-specific changes in genetic background. Here we test for adaptive convergence in hemoglobin (Hb) function among high-altitude passerine birds that are native to the Qinghai-Tibet Plateau, and we examine whether convergent increases in Hb-O2 affinity have a similar molecular basis in different species. We documented that high-altitude parid and aegithalid species from the Qinghai-Tibet Plateau have evolved derived increases in Hb-O2 affinity in comparison with their closest lowland relatives in East Asia. However, convergent increases in Hb-O2 affinity and convergence in underlying functional mechanisms were seldom attributable to the same amino acid substitutions in different species. Using ancestral protein resurrection and site-directed mutagenesis, we experimentally confirmed two cases in which parallel substitutions contributed to convergent increases in Hb-O2 affinity in codistributed high-altitude species. In one case involving the ground tit (Parus humilis) and gray-crested tit (Lophophanes dichrous), parallel amino acid replacements with affinity-enhancing effects were attributable to nonsynonymous substitutions at a CpG dinucleotide, suggesting a possible role for mutation bias in promoting recurrent changes at the same site. Overall, most altitude-related changes in Hb function were caused by divergent amino acid substitutions, and a select few were caused by parallel substitutions that produced similar phenotypic effects on the divergent genetic backgrounds of different species.


Asunto(s)
Adaptación Fisiológica/genética , Altitud , Hemoglobinas/fisiología , Passeriformes/genética , Passeriformes/fisiología , Distribución Animal , Animales , Evolución Molecular , Hemoglobinas/genética , Modelos Moleculares , Passeriformes/sangre , Conformación Proteica , Isoformas de Proteínas , Tibet
9.
Am J Physiol Regul Integr Comp Physiol ; 318(3): R657-R667, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32022587

RESUMEN

Hemoglobins (Hbs) of crocodilians are reportedly characterized by unique mechanisms of allosteric regulatory control, but there are conflicting reports regarding the importance of different effectors, such as chloride ions, organic phosphates, and CO2. Progress in understanding the unusual properties of crocodilian Hbs has also been hindered by a dearth of structural information. Here, we present the first comparative analysis of blood properties and Hb structure and function in a phylogenetically diverse set of crocodilian species. We examine mechanisms of allosteric regulation in the Hbs of 13 crocodilian species belonging to the families Crocodylidae and Alligatoridae. We also report new amino acid sequences for the α- and ß-globins of these taxa, which, in combination with structural analyses, provide insights into molecular mechanisms of allosteric regulation. All crocodilian Hbs exhibited a remarkably strong sensitivity to CO2, which would permit effective O2 unloading to tissues in response to an increase in metabolism during intense activity and diving. Although the Hbs of all crocodilians exhibit similar intrinsic O2-affinities, there is considerable variation in sensitivity to Cl- ions and ATP, which appears to be at least partly attributable to variation in the extent of NH2-terminal acetylation. Whereas chloride appears to be a potent allosteric effector of all crocodile Hbs, ATP has a strong, chloride-independent effect on Hb-O2 affinity only in caimans. Modeling suggests that allosteric ATP binding has a somewhat different structural basis in crocodilian and mammalian Hbs.


Asunto(s)
Adenosina Trifosfato/metabolismo , Regulación Alostérica/fisiología , Dióxido de Carbono/metabolismo , Cloruros/metabolismo , Hemoglobinas/metabolismo , Oxígeno/sangre , Secuencia de Aminoácidos/fisiología , Animales , Temperatura
10.
J Exp Biol ; 223(Pt 2)2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31836650

RESUMEN

Among the numerous lineages of teleost fish that have independently transitioned from obligate water breathing to facultative air breathing, evolved properties of hemoglobin (Hb)-O2 transport may have been shaped by the prevalence and severity of aquatic hypoxia (which influences the extent to which fish are compelled to switch to aerial respiration) as well as the anatomical design of air-breathing structures and the cardiovascular system. Here, we examined the structure and function of Hbs in an amphibious, facultative air-breathing fish, the blue-spotted mudskipper (Boleophthalmus pectinirostris). We also characterized the genomic organization of the globin gene clusters of the species and we integrated phylogenetic and comparative genomic analyses to unravel the duplicative history of the genes that encode the subunits of structurally distinct mudskipper Hb isoforms (isoHbs). The B. pectinirostris isoHbs exhibit high intrinsic O2 affinities, similar to those of hypoxia-tolerant, water-breathing teleosts, and remarkably large Bohr effects. Genomic analysis of conserved synteny revealed that the genes that encode the α-type subunits of the two main adult isoHbs are members of paralogous gene clusters that represent products of the teleost-specific whole-genome duplication. Experiments revealed no appreciable difference in the oxygenation properties of co-expressed isoHbs in spite of extensive amino acid divergence between the alternative α-chain subunit isoforms. It therefore appears that the ability to switch between aquatic and aerial respiration does not necessarily require a division of labor between functionally distinct isoHbs with specialized oxygenation properties.


Asunto(s)
Evolución Molecular , Peces/fisiología , Hemoglobinas/química , Respiración , Animales , Isoformas de Proteínas/química
11.
J Exp Biol ; 223(Pt 5)2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32054682

RESUMEN

High-altitude environments are cold and hypoxic, and many high-altitude natives have evolved changes in respiratory physiology that improve O2 uptake in hypoxia as adults. Altricial mammals undergo a dramatic metabolic transition from ectothermy to endothermy in early post-natal life, which may influence the ontogenetic development of respiratory traits at high altitude. We examined the developmental changes in respiratory and haematological traits in deer mice (Peromyscus maniculatus) native to high altitude, comparing the respiratory responses to progressive hypoxia between highland and lowland deer mice. Among adults, highlanders exhibited higher total ventilation and a more effective breathing pattern (relatively deeper tidal volumes), for mice that were caught and tested at their native altitudes and those lab-raised in normoxia. Lab-raised progeny of each population were also tested at post-natal day (P)7, 14, 21 and 30. Highlanders developed an enhanced hypoxic ventilatory response by P21, concurrent with the full maturation of the carotid bodies, and their more effective breathing pattern arose by P14; these ages correspond to critical benchmarks in the full development of homeothermy in highlanders. However, highlanders exhibited developmental delays in ventilatory sensitivity to hypoxia, hyperplasia of type I cells in the carotid body and increases in blood haemoglobin content compared with lowland mice. Nevertheless, highlanders maintained consistently higher arterial O2 saturation in hypoxia across development, in association with increases in blood-O2 affinity that were apparent from birth. We conclude that evolved changes in respiratory physiology in high-altitude deer mice become expressed in association with the post-natal development of endothermy.


Asunto(s)
Altitud , Peromyscus/fisiología , Respiración , Animales , Colorado , Pruebas Hematológicas/veterinaria , Peromyscus/sangre , Peromyscus/crecimiento & desarrollo , Pruebas de Función Respiratoria/veterinaria
12.
Mol Biol Evol ; 34(5): 1240-1251, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28201714

RESUMEN

If the fitness effects of amino acid mutations are conditional on genetic background, then mutations can have different effects depending on the sequential order in which they occur during evolutionary transitions in protein function. A key question concerns the fraction of possible mutational pathways connecting alternative functional states that involve transient reductions in fitness. Here we examine the functional effects of multiple amino acid substitutions that contributed to an evolutionary transition in the oxygenation properties of avian hemoglobin (Hb). The set of causative changes included mutations at intradimer interfaces of the Hb tetramer. Replacements at such sites may be especially likely to have epistatic effects on Hb function since residues at intersubunit interfaces are enmeshed in networks of salt bridges and hydrogen bonds between like and unlike subunits; mutational reconfigurations of these atomic contacts can affect allosteric transitions in quaternary structure and the propensity for tetramer-dimer dissociation. We used ancestral protein resurrection in conjunction with a combinatorial protein engineering approach to synthesize genotypes representing the complete set of mutational intermediates in all possible forward pathways that connect functionally distinct ancestral and descendent genotypes. The experiments revealed that 1/2 of all possible forward pathways included mutational intermediates with aberrant functional properties because particular combinations of mutations promoted tetramer-dimer dissociation. The subset of mutational pathways with unstable intermediates may be selectively inaccessible, representing evolutionary roads not taken. The experimental results also demonstrate how epistasis for particular functional properties of proteins may be mediated indirectly by mutational effects on quaternary structural stability.


Asunto(s)
Aves/genética , Epistasis Genética/genética , Hemoglobinas/genética , Sustitución de Aminoácidos/genética , Animales , Evolución Biológica , Simulación por Computador , Evolución Molecular , Aptitud Genética/genética , Pleiotropía Genética/genética , Genotipo , Hemoglobinas/metabolismo , Mutación
13.
J Exp Biol ; 221(Pt 18)2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30026237

RESUMEN

The high blood-O2 affinity of the bar-headed goose (Anser indicus) is an integral component of the biochemical and physiological adaptations that allow this hypoxia-tolerant species to undertake migratory flights over the Himalayas. The high blood-O2 affinity of this species was originally attributed to a single amino acid substitution of the major hemoglobin (Hb) isoform, HbA, which was thought to destabilize the low-affinity T state, thereby shifting the T-R allosteric equilibrium towards the high-affinity R state. Surprisingly, this mechanistic hypothesis has never been addressed using native proteins purified from blood. Here, we report a detailed analysis of O2 equilibria and kinetics of native major HbA and minor HbD isoforms from bar-headed goose and greylag goose (Anser anser), a strictly lowland species, to identify and characterize the mechanistic basis for the adaptive change in Hb function. We find that HbA and HbD of bar-headed goose have consistently higher O2 affinities than those of the greylag goose. The corresponding Hb isoforms of the two species are equally responsive to physiological allosteric cofactors and have similar Bohr effects. Thermodynamic analyses of O2 equilibrium curves according to the two-state Monod-Wyman-Changeaux model revealed higher R-state O2 affinities in the bar-headed goose Hbs, associated with lower O2 dissociation rates, compared with the greylag goose. Conversely, the T state was not destabilized and the T-R allosteric equilibrium was unaltered in bar-headed goose Hbs. The physiological implication of these results is that increased R-state affinity allows for enhanced O2 saturation in the lungs during hypoxia, but without impairing O2 delivery to tissues.


Asunto(s)
Adaptación Fisiológica , Migración Animal/fisiología , Gansos/fisiología , Hemoglobinas/metabolismo , Oxígeno/metabolismo , Regulación Alostérica , Altitud , Animales , Animales Salvajes/fisiología , Proteínas Aviares/metabolismo , Cinética
14.
Proc Natl Acad Sci U S A ; 112(45): 13958-63, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26460028

RESUMEN

A key question in evolutionary genetics is why certain mutations or certain types of mutation make disproportionate contributions to adaptive phenotypic evolution. In principle, the preferential fixation of particular mutations could stem directly from variation in the underlying rate of mutation to function-altering alleles. However, the influence of mutation bias on the genetic architecture of phenotypic evolution is difficult to evaluate because data on rates of mutation to function-altering alleles are seldom available. Here, we report the discovery that a single point mutation at a highly mutable site in the ß(A)-globin gene has contributed to an evolutionary change in hemoglobin (Hb) function in high-altitude Andean house wrens (Troglodytes aedon). Results of experiments on native Hb variants and engineered, recombinant Hb mutants demonstrate that a nonsynonymous mutation at a CpG dinucleotide in the ß(A)-globin gene is responsible for an evolved difference in Hb-O2 affinity between high- and low-altitude house wren populations. Moreover, patterns of genomic differentiation between high- and low-altitude populations suggest that altitudinal differentiation in allele frequencies at the causal amino acid polymorphism reflects a history of spatially varying selection. The experimental results highlight the influence of mutation rate on the genetic basis of phenotypic evolution by demonstrating that a large-effect allele at a highly mutable CpG site has promoted physiological differentiation in blood O2 transport capacity between house wren populations that are native to different elevations.


Asunto(s)
Adaptación Biológica/genética , Altitud , Hemoglobinas/metabolismo , Fenotipo , Mutación Puntual/genética , Pájaros Cantores/genética , Globinas beta/genética , Adaptación Biológica/fisiología , Animales , Secuencia de Bases , Clonación Molecular , Hemoglobinas/genética , Hemoglobinas/aislamiento & purificación , Datos de Secuencia Molecular , Tasa de Mutación , Oxígeno/metabolismo , Perú , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Pájaros Cantores/fisiología , Espectrometría de Masas en Tándem
15.
PLoS Genet ; 11(12): e1005681, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26637114

RESUMEN

A fundamental question in evolutionary genetics concerns the extent to which adaptive phenotypic convergence is attributable to convergent or parallel changes at the molecular sequence level. Here we report a comparative analysis of hemoglobin (Hb) function in eight phylogenetically replicated pairs of high- and low-altitude waterfowl taxa to test for convergence in the oxygenation properties of Hb, and to assess the extent to which convergence in biochemical phenotype is attributable to repeated amino acid replacements. Functional experiments on native Hb variants and protein engineering experiments based on site-directed mutagenesis revealed the phenotypic effects of specific amino acid replacements that were responsible for convergent increases in Hb-O2 affinity in multiple high-altitude taxa. In six of the eight taxon pairs, high-altitude taxa evolved derived increases in Hb-O2 affinity that were caused by a combination of unique replacements, parallel replacements (involving identical-by-state variants with independent mutational origins in different lineages), and collateral replacements (involving shared, identical-by-descent variants derived via introgressive hybridization). In genome scans of nucleotide differentiation involving high- and low-altitude populations of three separate species, function-altering amino acid polymorphisms in the globin genes emerged as highly significant outliers, providing independent evidence for adaptive divergence in Hb function. The experimental results demonstrate that convergent changes in protein function can occur through multiple historical paths, and can involve multiple possible mutations. Most cases of convergence in Hb function did not involve parallel substitutions and most parallel substitutions did not affect Hb-O2 affinity, indicating that the repeatability of phenotypic evolution does not require parallelism at the molecular level.


Asunto(s)
Evolución Molecular , Hemoglobinas/genética , Globinas alfa/genética , Globinas beta/genética , Adaptación Fisiológica/genética , Altitud , Animales , Aves/sangre , Aves/genética , Aves/fisiología , Hemoglobinas/química , Oxígeno/metabolismo , Fenotipo , Filogenia , Polimorfismo Genético , Análisis de Secuencia de ADN , Globinas alfa/química , Globinas alfa/metabolismo , Globinas beta/química , Globinas beta/metabolismo
17.
Mol Biol Evol ; 32(4): 871-87, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25502940

RESUMEN

The apparent stasis in the evolution of avian chromosomes suggests that birds may have experienced relatively low rates of gene gain and loss in multigene families. To investigate this possibility and to explore the phenotypic consequences of variation in gene copy number, we examined evolutionary changes in the families of genes that encode the α- and ß-type subunits of hemoglobin (Hb), the tetrameric α2ß2 protein responsible for blood-O2 transport. A comparative genomic analysis of 52 bird species revealed that the size and membership composition of the α- and ß-globin gene families have remained remarkably constant during approximately 100 My of avian evolution. Most interspecific variation in gene content is attributable to multiple independent inactivations of the α(D)-globin gene, which encodes the α-chain subunit of a functionally distinct Hb isoform (HbD) that is expressed in both embryonic and definitive erythrocytes. Due to consistent differences in O2-binding properties between HbD and the major adult-expressed Hb isoform, HbA (which incorporates products of the α(A)-globin gene), recurrent losses of α(D)-globin contribute to among-species variation in blood-O2 affinity. Analysis of HbA/HbD expression levels in the red blood cells of 122 bird species revealed high variability among lineages and strong phylogenetic signal. In comparison with the homologous gene clusters in mammals, the low retention rate for lineage-specific gene duplicates in the avian globin gene clusters suggests that the developmental regulation of Hb synthesis in birds may be more highly conserved, with orthologous genes having similar stage-specific expression profiles and similar functional properties in disparate taxa.


Asunto(s)
Proteínas Aviares/genética , Aves/genética , Evolución Molecular , Familia de Multigenes , Globinas alfa/genética , Globinas beta/genética , Animales , Dosificación de Gen , Genómica , Filogenia , Isoformas de Proteínas/genética
18.
Mol Biol Evol ; 32(2): 287-98, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25415962

RESUMEN

A fundamental question in evolutionary genetics concerns the roles of mutational pleiotropy and epistasis in shaping trajectories of protein evolution. This question can be addressed most directly by using site-directed mutagenesis to explore the mutational landscape of protein function in experimentally defined regions of sequence space. Here, we evaluate how pleiotropic trade-offs and epistatic interactions influence the accessibility of alternative mutational pathways during the adaptive evolution of hemoglobin (Hb) function in high-altitude pikas (Mammalia: Lagomorpha). By combining ancestral protein resurrection with a combinatorial protein-engineering approach, we examined the functional effects of sequential mutational steps in all possible pathways that produced an increased Hb-O2 affinity. These experiments revealed that the effects of mutations on Hb-O2 affinity are highly dependent on the temporal order in which they occur: Each of three ß-chain substitutions produced a significant increase in Hb-O2 affinity on the ancestral genetic background, but two of these substitutions produced opposite effects when they occurred as later steps in the pathway. The experiments revealed pervasive epistasis for Hb-O2 affinity, but affinity-altering mutations produced no significant pleiotropic trade-offs. These results provide insights into the properties of adaptive substitutions in naturally evolved proteins and suggest that the accessibility of alternative mutational pathways may be more strongly constrained by sign epistasis for positively selected biochemical phenotypes than by antagonistic pleiotropy.


Asunto(s)
Altitud , Epistasis Genética/genética , Hemoglobinas/genética , Lagomorpha/genética , Lagomorpha/metabolismo , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Animales , Evolución Molecular , Mutación , Oxígeno/metabolismo , Selección Genética/genética
19.
Mol Biol Evol ; 32(4): 978-97, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25556236

RESUMEN

Major challenges for illuminating the genetic basis of phenotypic evolution are to identify causative mutations, to quantify their functional effects, to trace their origins as new or preexisting variants, and to assess the manner in which segregating variation is transduced into species differences. Here, we report an experimental analysis of genetic variation in hemoglobin (Hb) function within and among species of Peromyscus mice that are native to different elevations. A multilocus survey of sequence variation in the duplicated HBA and HBB genes in Peromyscus maniculatus revealed that function-altering amino acid variants are widely shared among geographically disparate populations from different elevations, and numerous amino acid polymorphisms are also shared with closely related species. Variation in Hb-O2 affinity within and among populations of P. maniculatus is attributable to numerous amino acid mutations that have individually small effects. One especially surprising feature of the Hb polymorphism in P. maniculatus is that an appreciable fraction of functional standing variation in the two transcriptionally active HBA paralogs is attributable to recurrent gene conversion from a tandemly linked HBA pseudogene. Moreover, transpecific polymorphism in the duplicated HBA genes is not solely attributable to incomplete lineage sorting or introgressive hybridization; instead, it is mainly attributable to recurrent interparalog gene conversion that has occurred independently in different species. Partly as a result of concerted evolution between tandemly duplicated globin genes, the same amino acid changes that contribute to variation in Hb function within P. maniculatus also contribute to divergence in Hb function among different species of Peromyscus. In the case of function-altering Hb mutations in Peromyscus, there is no qualitative or quantitative distinction between segregating variants within species and fixed differences between species.


Asunto(s)
Evolución Molecular , Subunidades de Hemoglobina/genética , Familia de Multigenes , Mutación , Peromyscus/genética , Polimorfismo Genético , Secuencia de Aminoácidos , Animales , Conversión Génica , Datos de Secuencia Molecular
20.
Proc Natl Acad Sci U S A ; 110(51): 20669-74, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24297909

RESUMEN

Animals that sustain high levels of aerobic activity under hypoxic conditions (e.g., birds that fly at high altitude) face the physiological challenge of jointly optimizing blood-O2 affinity for O2 loading in the pulmonary circulation and O2 unloading in the systemic circulation. At high altitude, this challenge is especially acute for small endotherms like hummingbirds that have exceedingly high mass-specific metabolic rates. Here we report an experimental analysis of hemoglobin (Hb) function in South American hummingbirds that revealed a positive correlation between Hb-O2 affinity and native elevation. Protein engineering experiments and ancestral-state reconstructions revealed that this correlation is attributable to derived increases in Hb-O2 affinity in highland lineages, as well as derived reductions in Hb-O2 affinity in lowland lineages. Site-directed mutagenesis experiments demonstrated that repeated evolutionary transitions in biochemical phenotype are mainly attributable to repeated amino acid replacements at two epistatically interacting sites that alter the allosteric regulation of Hb-O2 affinity. These results demonstrate that repeated changes in biochemical phenotype involve parallelism at the molecular level, and that mutations with indirect, second-order effects on Hb allostery play key roles in biochemical adaptation.


Asunto(s)
Adaptación Fisiológica/fisiología , Proteínas Aviares , Aves/fisiología , Evolución Molecular , Hemoglobinas , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Hemoglobinas/genética , Hemoglobinas/metabolismo , Datos de Secuencia Molecular , Mutación Missense , Oxígeno/metabolismo , América del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA