Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37420729

RESUMEN

The number of users of the Internet has been continuously rising, with an estimated 5.1 billion users in 2023, which comprises around 64.7% of the total world population. This indicates the rise of more connected devices to the network. On average, 30,000 websites are hacked daily, and nearly 64% of companies worldwide experience at least one type of cyberattack. As per IDC's 2022 Ransomware study, two-thirds of global organizations were hit by a ransomware attack that year. This creates the desire for a more robust and evolutionary attack detection and recovery model. One aspect of the study is the bio-inspiration models. This is because of the natural ability of living organisms to withstand various odd circumstances and overcome them with an optimization strategy. In contrast to the limitations of machine learning models with the need for quality datasets and computational availability, bio-inspired models can perform in low computational environments, and their performances are designed to evolve naturally with time. This study concentrates on exploring the evolutionary defence mechanism in plants and understanding how plants react to any known external attacks and how the response mechanism changes to unknown attacks. This study also explores how regenerative models, such as salamander limb regeneration, could build a network recovery system where services could be automatically activated after a network attack, and data could be recovered automatically by the network after a ransomware-like attack. The performance of the proposed model is compared to open-source IDS Snort and data recovery systems such as Burp and Casandra.


Asunto(s)
Evolución Biológica , Internet , Aprendizaje Automático
2.
Sensors (Basel) ; 22(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35271104

RESUMEN

Presently, lightweight devices such as mobile phones, notepads, and laptops are widely used to access the Internet throughout the world; however, a problem of privacy preservation and authentication delay occurs during handover operation when these devices change their position from a home mesh access point (HMAP) to a foreign mesh access point (FMAP). Authentication during handover is mostly performed through ticket-based techniques, which permit the user to authenticate itself to the foreign mesh access point; therefore, a secure communication method should be formed between the mesh entities to exchange the tickets. In two existing protocols, this ticket was not secured at all and exchanged in a plaintext format. We propose a protocol for handover authentication with privacy preservation of the transfer ticket via the Diffie-Hellman method. Through experimental results, our proposed protocol achieves privacy preservation with minimum authentication delay during handover operation.


Asunto(s)
Seguridad Computacional , Privacidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA