Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 138(18): 1677-1690, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33895800

RESUMEN

Adeno-associated virus (AAV)-mediated gene therapy is a novel treatment promising to reduce morbidity associated with hemophilia. Although multiple clinical trials continue to evaluate efficacy and safety, limited cost-effectiveness data have been published. This study compared the potential cost-effectiveness of AAV-mediated factor IX (FIX)-Padua gene therapy for patients with severe hemophilia B in the United States vs on-demand FIX replacement and primary FIX prophylaxis, using either standard or extended half-life FIX products. A microsimulation Markov model was constructed, and transition probabilities between health states and utilities were informed by using published data. Costs were aggregated by using a microcosting approach. A time horizon from 18 years old until death, from the perspective of a third-party payer in the United States, was conducted. Gene therapy was more cost-effective than both alternatives considering a $150 000/quality-adjusted life-year threshold. The price for gene therapy was assumed to be $2 000 000 in the base case scenario; however, one of the 1-way sensitivity analyses was conducted by using observed manufacturing, administration, and 5-year follow-up costs of $87 198 for AAV-mediated gene therapy vector as derived from the manufacturing facility and clinical practice at St Jude Children's Research Hospital. One-way sensitivity analyses revealed 10 of 102 scenarios in which gene therapy was not cost-effective compared with alternative treatments. Notably, gene therapy remained cost-effective in a hypothetical scenario in which we estimated that the discounted factor concentrate price was 20% of the wholesale acquisition cost in the United States. Probabilistic sensitivity analysis estimated gene therapy to be cost-effective at 92% of simulations considering a $150 000/quality-adjusted life-year threshold. In conclusion, based on detailed simulation inputs and assumptions, gene therapy was more cost-effective than on-demand treatment and prophylaxis for patients with severe hemophilia B.


Asunto(s)
Terapia Genética/economía , Hemofilia B/terapia , Adulto , Simulación por Computador , Análisis Costo-Beneficio , Hemofilia B/economía , Hemofilia B/epidemiología , Humanos , Cadenas de Markov , Probabilidad , Estados Unidos/epidemiología
2.
Br J Haematol ; 191(4): 573-578, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33190257

RESUMEN

The single most important step on the path to our modern understanding of blood coagulation and haemophilia in the 20th century was taken by British pathologist Robert Gwyn Macfarlane with his 1964 publication 'An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier'. In the same year, Ratnoff and Davie in the USA reached the same conclusion. Macfarlane and Rosemary Biggs had previously, in 1952, discovered factor IX as the factor deficient in haemophilia B. In 1973, Arthur Bloom defined the distinct role of Factor VIII and von Willebrand factor in haemophilia A and von Willebrand's disease respectively. This inspired the efforts of Tuddenham and his group towards the purification of Factor VIII which reached homogeneity in 1982, leading to the cloning of the Factor VIII gene in 1984 in collaboration with US scientists at Genentech, which in turn enabled development of safe recombinant factor concentrates for patients with haemophilia. Brownlee cloned the factor IX gene in 1982 at the Sir William Dunn Institute of Pathology in Oxford. This led eventually to the first successful trial of gene therapy for haemophilia B in 2011 by the Nathwani group at UCL, which built on pioneering work of US groups and was partnered with St Jude in Memphis where Nathwani started the project. This trial has fuelled the current quest for a functional cure of haemophilia A and B. The UK has, therefore, made a rich contribution to advances in haemostasis over the last 60 years, often in partnership with other groups across the world.


Asunto(s)
Hemofilia A/epidemiología , Hemofilia A/terapia , Hemofilia B/epidemiología , Hemofilia B/terapia , Ensayos Clínicos como Asunto , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Hemofilia A/etiología , Hemofilia A/historia , Hemofilia B/etiología , Hemofilia B/historia , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Resultado del Tratamiento
3.
FASEB J ; 33(3): 3954-3967, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30517034

RESUMEN

Adeno-associated viral vectors (AAVs) achieve stable therapeutic expression without long-term toxicity in adults with hemophilia. To avert irreversible complications in congenital disorders producing early pathogenesis, safety and efficacy of AAV-intrauterine gene transfer (IUGT) requires assessment. We therefore performed IUGT of AAV5 or -8 with liver-specific promoter-1 encoding either human coagulation factors IX (hFIX) or X (hFX) into Macaca fascicularis fetuses at ∼0.4 gestation. The initial cohort received 1 × 1012 vector genomes (vgs) of AAV5-hFIX ( n = 5; 0.45 × 1013 vg/kg birth weight), resulting in ∼3.0% hFIX at birth and 0.6-6.8% over 19-51 mo. The next cohort received 0.2-1 × 1013 vg boluses. AAV5-hFX animals ( n = 3; 3.57 × 1013 vg/kg) expressed <1% at birth and 9.4-27.9% up to 42 mo. AAV8-hFIX recipients ( n = 3; 2.56 × 1013 vg/kg) established 4.2-41.3% expression perinatally and 9.8-25.3% over 46 mo. Expression with AAV8-hFX ( n = 6, 3.12 × 1013 vg/kg) increased from <1% perinatally to 9.8-13.4% >35 mo. Low expressers (<1%, n = 3) were postnatally challenged with 2 × 1011 vg/kg AAV5 resulting in 2.4-13.2% expression and demonstrating acquired tolerance. Linear amplification-mediated-PCR analysis demonstrated random integration of 57-88% of AAV sequences retrieved from hepatocytes with no events occurring in or near oncogenesis-associated genes. Thus, early-IUGT in macaques produces sustained curative expression related significantly to integrated AAV in the absence of clinical toxicity, supporting its therapeutic potential for early-onset monogenic disorders.-Chan, J. K. Y., Gil-Farina I., Johana, N., Rosales, C., Tan, Y. W., Ceiler, J., Mcintosh, J., Ogden, B., Waddington, S. N., Schmidt, M., Biswas, A., Choolani, M., Nathwani, A. C., Mattar, C. N. Z. Therapeutic expression of human clotting factors IX and X following adeno-associated viral vector-mediated intrauterine gene transfer in early-gestation fetal macaques.


Asunto(s)
Dependovirus/genética , Factor IX/genética , Factor X/genética , Terapia Genética/métodos , Edad Gestacional , Animales , Dependovirus/metabolismo , Factor IX/metabolismo , Factor X/metabolismo , Femenino , Técnicas de Transferencia de Gen , Terapia Genética/efectos adversos , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Hígado/metabolismo , Macaca fascicularis , Masculino , Útero/metabolismo
4.
Mol Ther ; 26(1): 289-303, 2018 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-29055620

RESUMEN

Existing recombinant adeno-associated virus (rAAV) serotypes for delivering in vivo gene therapy treatments for human liver diseases have not yielded combined high-level human hepatocyte transduction and favorable humoral neutralization properties in diverse patient groups. Yet, these combined properties are important for therapeutic efficacy. To bioengineer capsids that exhibit both unique seroreactivity profiles and functionally transduce human hepatocytes at therapeutically relevant levels, we performed multiplexed sequential directed evolution screens using diverse capsid libraries in both primary human hepatocytes in vivo and with pooled human sera from thousands of patients. AAV libraries were subjected to five rounds of in vivo selection in xenografted mice with human livers to isolate an enriched human-hepatotropic library that was then used as input for a sequential on-bead screen against pooled human immunoglobulins. Evolved variants were vectorized and validated against existing hepatotropic serotypes. Two of the evolved AAV serotypes, NP40 and NP59, exhibited dramatically improved functional human hepatocyte transduction in vivo in xenografted mice with human livers, along with favorable human seroreactivity profiles, compared with existing serotypes. These novel capsids represent enhanced vector delivery systems for future human liver gene therapy applications.


Asunto(s)
Proteínas de la Cápside/genética , Dependovirus/genética , Ingeniería Genética , Vectores Genéticos/genética , Hígado/metabolismo , Transducción Genética , Animales , Proteínas de la Cápside/química , Femenino , Técnicas de Transferencia de Gen , Hepatocitos/metabolismo , Xenoinjertos , Humanos , Masculino , Ratones , Modelos Moleculares , Conformación Proteica
5.
Br J Haematol ; 181(2): 161-172, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29359795

RESUMEN

Haemophilia therapy has undergone very rapid evolution in the last 10 years. The major limitation of current replacement therapy is the short half-life of factors VIII and IX. These half-lives have been extended by the addition of various moieties, allowing less frequent infusion regimens. Entirely novel approaches have also entered the clinic, including a bispecific antibody that mimics factor VIII and strategies that rebalance the haemostatic mechanism by reducing antithrombin through inhibition of synthesis. These two treatments are available by subcutaneous injection at infrequent intervals and both can be used in patients with neutralising antibodies (inhibitors). Finally, a cure may be on the horizon with preliminary evidence of success for gene therapy in haemophilia B and A.


Asunto(s)
Anticuerpos Biespecíficos/uso terapéutico , Factor IX/uso terapéutico , Factor VIII/uso terapéutico , Terapia Genética , Hemofilia A/terapia , Hemofilia B/terapia , Anticuerpos Biespecíficos/farmacocinética , Antitrombinas/sangre , Factor IX/farmacocinética , Factor VIII/farmacocinética , Hemofilia A/sangre , Hemofilia A/genética , Hemofilia B/sangre , Hemofilia B/genética , Humanos
6.
Mol Ther ; 25(5): 1163-1167, 2017 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-28411016

RESUMEN

The X-linked bleeding disorder hemophilia causes frequent and exaggerated bleeding that can be life-threatening if untreated. Conventional therapy requires frequent intravenous infusions of the missing coagulation protein (factor VIII [FVIII] for hemophilia A and factor IX [FIX] for hemophilia B). However, a lasting cure through gene therapy has long been sought. After a series of successes in small and large animal models, this goal has finally been achieved in humans by in vivo gene transfer to the liver using adeno-associated viral (AAV) vectors. In fact, multiple recent clinical trials have shown therapeutic, and in some cases curative, expression. At the same time, cellular immune responses against the virus have emerged as an obstacle in humans, potentially resulting in loss of expression. Transient immune suppression protocols have been developed to blunt these responses. Here, we provide an overview of the clinical development of AAV gene transfer for hemophilia, as well as an outlook on future directions.


Asunto(s)
Factor IX/genética , Factor VIII/genética , Terapia Genética/métodos , Hemofilia A/terapia , Hemofilia B/terapia , Transfusión Sanguínea , Dependovirus/genética , Dependovirus/inmunología , Factor IX/metabolismo , Factor VIII/metabolismo , Expresión Génica , Terapia Genética/tendencias , Vectores Genéticos/química , Vectores Genéticos/inmunología , Hemofilia A/genética , Hemofilia A/metabolismo , Hemofilia A/patología , Hemofilia B/genética , Hemofilia B/metabolismo , Hemofilia B/patología , Humanos , Lentivirus/genética , Lentivirus/inmunología , Mutación
7.
Mol Ther ; 25(8): 1843-1853, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28462816

RESUMEN

The safe correction of an inherited bleeding disorder in utero prior to the onset of organ damage is highly desirable. Here, we report long-term transgene expression over more than 6 years without toxicity following a single intrauterine gene transfer (IUGT) at 0.9G using recombinant adeno-associated vector (AAV)-human factor IX (hFIX) in the non-human primate model we have previously described. Four of six treated animals monitored for around 74 months expressed hFIX at therapeutic levels (3.9%-120.0%). Long-term expression was 6-fold higher in males and with AAV8 compared to AAV5, mediated almost completely at this stage by random genome-wide hepatic proviral integrations, with no evidence of hotspots. Post-natal AAV challenge without immunosuppression was evaluated in two animals exhibiting chronic low transgene expression. The brief neutralizing immune reaction elicited had no adverse effect and, although expression was not improved at the dose administered, no clinical toxicity was observed. This long-term surveillance thus confirms the safety of late-gestation AAV-hFIX transfer and demonstrates that postnatal re-administration can be performed without immunosuppression, although it requires dose optimization for the desired expression. Nevertheless, eventual vector genotoxicity and the possibility of germline transmission will require lifelong monitoring and further evaluation of the reproductive function of treated animals.


Asunto(s)
Dependovirus/genética , Factor IX/genética , Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Hemofilia B/sangre , Hemofilia B/genética , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Dependovirus/inmunología , Modelos Animales de Enfermedad , Femenino , Terapia Genética , Vectores Genéticos/administración & dosificación , Vectores Genéticos/efectos adversos , Hemofilia B/terapia , Humanos , Tolerancia Inmunológica , Hígado/metabolismo , Macaca fascicularis , Masculino , Embarazo , Factores de Tiempo , Transducción Genética , Transgenes
8.
Lancet ; 388(10049): 1075-1080, 2016 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-27461439

RESUMEN

BACKGROUND: Polonium-210 ((210)Po) gained widespread notoriety after the poisoning and subsequent death of Mr Alexander Litvinenko in London, UK, in 2006. Exposure to (210)Po resulted initially in a clinical course that was indistinguishable from infection or exposure to chemical toxins, such as thallium. METHODS: A 43-year-old man presented to his local hospital with acute abdominal pain, diarrhoea, and vomiting, and was admitted to the hospital because of dehydration and persistent gastrointestinal symptoms. He was initially diagnosed with gastroenteritis and treated with antibiotics. Clostridium difficile toxin was subsequently detected in his stools, which is when he first raised the possibility of being poisoned and revealed his background and former identity, having been admitted under a new identity with which he had been provided on being granted asylum in the UK. Within 6 days, the patient had developed thrombocytopenia and neutropenia, which was initially thought to be drug induced. By 2 weeks, in addition to bone marrow failure, he had evidence of alopecia and mucositis. Thallium poisoning was suspected and investigated but ultimately dismissed because blood levels of thallium, although raised, were lower than toxic concentrations. The patient continued to deteriorate and within 3 weeks had developed multiple organ failure requiring ventilation, haemofiltration, and cardiac support, associated with a drop in consciousness. On the 23rd day after he first became ill, he suffered a pulseless electrical activity cardiorespiratory arrest from which he could not be resuscitated and was pronounced dead. FINDINGS: Urine analysis using gamma-ray spectroscopy on day 22 showed a characteristic 803 keV photon emission, raising the possibility of (210)Po poisoning. Results of confirmatory analysis that became available after the patient's death established the presence of (210)Po at concentrations about 10(9)-times higher than normal background levels. Post-mortem tissue analyses showed autolysis and retention of (210)Po at lethal doses in several organs. On the basis of the measured amounts and tissue distribution of (210)Po, it was estimated that the patient had ingested several 1000 million becquerels (a few GBq), probably as a soluble salt (eg, chloride), which delivered very high and fatal radiation doses over a period of a few days. INTERPRETATION: Early symptoms of (210)Po poisoning are indistinguishable from those of a wide range of chemical toxins. Hence, the diagnosis can be delayed and even missed without a high degree of suspicion. Although body surface scanning with a standard Geiger counter was unable to detect the radiation emitted by (210)Po, an atypical clinical course prompted active consideration of poisoning with radioactive material, with the diagnosis ultimately being made with gamma-ray spectroscopy of a urine sample. FUNDING: UK NHS, Public Health England, and the UK Department of Health.


Asunto(s)
Insuficiencia Multiorgánica/etiología , Polonio/envenenamiento , Dolor Abdominal/etiología , Adulto , Alopecia/etiología , Trastornos de la Conciencia/etiología , Diagnóstico Tardío , Diagnóstico Diferencial , Inglaterra , Resultado Fatal , Gastroenteritis/diagnóstico , Gastroenteritis/etiología , Paro Cardíaco/etiología , Humanos , Masculino , Mucositis/etiología , Neutropenia/etiología , Intoxicación/complicaciones , Intoxicación/diagnóstico , Insuficiencia Respiratoria/etiología , Trombocitopenia/etiología
9.
N Engl J Med ; 371(21): 1994-2004, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25409372

RESUMEN

BACKGROUND: In patients with severe hemophilia B, gene therapy that is mediated by a novel self-complementary adeno-associated virus serotype 8 (AAV8) vector has been shown to raise factor IX levels for periods of up to 16 months. We wanted to determine the durability of transgene expression, the vector dose-response relationship, and the level of persistent or late toxicity. METHODS: We evaluated the stability of transgene expression and long-term safety in 10 patients with severe hemophilia B: 6 patients who had been enrolled in an initial phase 1 dose-escalation trial, with 2 patients each receiving a low, intermediate, or high dose, and 4 additional patients who received the high dose (2×10(12) vector genomes per kilogram of body weight). The patients subsequently underwent extensive clinical and laboratory monitoring. RESULTS: A single intravenous infusion of vector in all 10 patients with severe hemophilia B resulted in a dose-dependent increase in circulating factor IX to a level that was 1 to 6% of the normal value over a median period of 3.2 years, with observation ongoing. In the high-dose group, a consistent increase in the factor IX level to a mean (±SD) of 5.1±1.7% was observed in all 6 patients, which resulted in a reduction of more than 90% in both bleeding episodes and the use of prophylactic factor IX concentrate. A transient increase in the mean alanine aminotransferase level to 86 IU per liter (range, 36 to 202) occurred between week 7 and week 10 in 4 of the 6 patients in the high-dose group but resolved over a median of 5 days (range, 2 to 35) after prednisolone treatment. CONCLUSIONS: In 10 patients with severe hemophilia B, the infusion of a single dose of AAV8 vector resulted in long-term therapeutic factor IX expression associated with clinical improvement. With a follow-up period of up to 3 years, no late toxic effects from the therapy were reported. (Funded by the National Heart, Lung, and Blood Institute and others; ClinicalTrials.gov number, NCT00979238.).


Asunto(s)
Factor IX/genética , Terapia Genética , Vectores Genéticos/administración & dosificación , Hemofilia B/terapia , Adulto , Alanina Transaminasa/sangre , Dependovirus/genética , Factor IX/metabolismo , Estudios de Seguimiento , Expresión Génica , Terapia Genética/efectos adversos , Hemofilia B/sangre , Hemofilia B/genética , Humanos , Infusiones Intravenosas , Masculino , Persona de Mediana Edad , Transgenes , Adulto Joven
10.
Blood ; 121(17): 3335-44, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23426947

RESUMEN

Recombinant adeno-associated virus (rAAV) vectors encoding human factor VIII (hFVIII) were systematically evaluated for hemophilia A (HA) gene therapy. A 5.7-kb rAAV-expression cassette (rAAV-HLP-codop-hFVIII-N6) containing a codon-optimized hFVIII cDNA in which a 226 amino acid (aa) B-domain spacer replaced the entire B domain and a hybrid liver-specific promoter (HLP) mediated 10-fold higher hFVIII levels in mice compared with non-codon-optimized variants. A further twofold improvement in potency was achieved by replacing the 226-aa N6 spacer with a novel 17-aa peptide (V3) in which 6 glycosylation triplets from the B domain were juxtaposed. The resulting 5.2-kb rAAV-HLP-codop-hFVIII-V3 cassette was more efficiently packaged within AAV virions and mediated supraphysiologic hFVIII expression (732 ± 162% of normal) in HA knock-out mice following administration of 2 × 10(12) vector genomes/kg, a vector dose shown to be safe in subjects with hemophilia B. Stable hFVIII expression at 15 ± 4% of normal was observed at this dose in a nonhuman primate. hFVIII expression above 100% was observed in 3 macaques that received a higher dose of either this vector or the N6 variant. These animals developed neutralizing anti-FVIII antibodies that were abrogated with transient immunosuppression. Therefore, rAAV-HLP-codop-hFVIII-V3 substantially improves the prospects of effective HA gene therapy.


Asunto(s)
Dependovirus/genética , Factor VIII/farmacología , Terapia Genética , Variación Genética/genética , Vectores Genéticos/administración & dosificación , Hemofilia A/terapia , Animales , Western Blotting , Factor VIII/genética , Factor VIII/inmunología , Glicosilación , Hemofilia A/genética , Humanos , Tolerancia Inmunológica , Hígado/metabolismo , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Regiones Promotoras Genéticas/genética
13.
N Engl J Med ; 365(25): 2357-65, 2011 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-22149959

RESUMEN

BACKGROUND: Hemophilia B, an X-linked disorder, is ideally suited for gene therapy. We investigated the use of a new gene therapy in patients with the disorder. METHODS: We infused a single dose of a serotype-8-pseudotyped, self-complementary adenovirus-associated virus (AAV) vector expressing a codon-optimized human factor IX (FIX) transgene (scAAV2/8-LP1-hFIXco) in a peripheral vein in six patients with severe hemophilia B (FIX activity, <1% of normal values). Study participants were enrolled sequentially in one of three cohorts (given a high, intermediate, or low dose of vector), with two participants in each group. Vector was administered without immunosuppressive therapy, and participants were followed for 6 to 16 months. RESULTS: AAV-mediated expression of FIX at 2 to 11% of normal levels was observed in all participants. Four of the six discontinued FIX prophylaxis and remained free of spontaneous hemorrhage; in the other two, the interval between prophylactic injections was increased. Of the two participants who received the high dose of vector, one had a transient, asymptomatic elevation of serum aminotransferase levels, which was associated with the detection of AAV8-capsid-specific T cells in the peripheral blood; the other had a slight increase in liver-enzyme levels, the cause of which was less clear. Each of these two participants received a short course of glucocorticoid therapy, which rapidly normalized aminotransferase levels and maintained FIX levels in the range of 3 to 11% of normal values. CONCLUSIONS: Peripheral-vein infusion of scAAV2/8-LP1-hFIXco resulted in FIX transgene expression at levels sufficient to improve the bleeding phenotype, with few side effects. Although immune-mediated clearance of AAV-transduced hepatocytes remains a concern, this process may be controlled with a short course of glucocorticoids without loss of transgene expression. (Funded by the Medical Research Council and others; ClinicalTrials.gov number, NCT00979238.).


Asunto(s)
Dependovirus , Factor IX/genética , Terapia Genética , Vectores Genéticos , Hemofilia B/terapia , Adulto , Dependovirus/genética , Factor IX/uso terapéutico , Terapia Genética/efectos adversos , Vectores Genéticos/inmunología , Humanos , Infusiones Intravenosas , Persona de Mediana Edad , Transgenes/inmunología
14.
Blood ; 119(4): 957-66, 2012 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-22134170

RESUMEN

We explored adeno-associated viral vector (AAV)-mediated gene transfer in the perinatal period in animal models of severe congenital factor VII (FVII) deficiency, a disease associated with early postnatal life-threatening hemorrhage. In young adult mice with plasma FVII < 1% of normal, a single tail vein administration of AAV (1 × 10(13) vector genomes [vg]/kg) resulted in expression of murine FVII at 266% ± 34% of normal for ≥ 67 days, which mediated protection against fatal hemorrhage and significantly improved survival. Codon optimization of human FVII (hFVIIcoop) improved AAV transgene expression by 37-fold compared with the wild-type hFVII cDNA. In adult macaques, a single peripheral vein injection of 2 × 10(11) vg/kg of the hFVIIcoop AAV vector resulted in therapeutic levels of hFVII expression that were equivalent in males (10.7% ± 3.1%) and females (12.3% ± 0.8%). In utero delivery of this vector in the third trimester to fetal monkeys conferred expression of hFVII at birth of 20.4% ± 3.7%, with a gradual decline to > 1% by 7 weeks. Re-administration of an alternative serotype at 12 months postnatal age increased hFVII levels to 165% ± 6.2% of normal, which remained at therapeutic levels for a further 28 weeks without toxicity. Thus, perinatal AAV-mediated gene transfer shows promise for disorders with onset of pathology early after birth.


Asunto(s)
Dependovirus , Deficiencia del Factor VII/terapia , Factor VII/uso terapéutico , Terapia Genética/métodos , Vectores Genéticos , Hemorragia/prevención & control , Atención Perinatal , Animales , Animales Recién Nacidos , Codón , Dependovirus/genética , Factor VII/análisis , Factor VII/biosíntesis , Factor VII/genética , Deficiencia del Factor VII/sangre , Deficiencia del Factor VII/genética , Deficiencia del Factor VII/fisiopatología , Femenino , Terapias Fetales/efectos adversos , Expresión Génica , Terapia Genética/efectos adversos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/efectos adversos , Hemorragia/etiología , Células Hep G2 , Humanos , Inyecciones Intravenosas , Macaca mulatta , Masculino , Ratones , Embarazo , Caracteres Sexuales , Análisis de Supervivencia
15.
Thromb Res ; 236: 242-249, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38383218

RESUMEN

Early gene therapy clinical trials for the treatment of Haemophilia B have been instrumental to our global understanding of gene therapy and have significantly contributed to the rapid expansion of the field. The use of adeno-associated viruses (AAVs) as vectors for gene transfer has successfully led to therapeutic expression of coagulation factor IX (FIX) in severe haemophilia B patients. Expression of FIX has remained stable following a single administration of vector for up to 8 years at levels that are clinically relevant to reduce the incidence of spontaneous bleeds and have permitted a significant change in the disease management with reduction or elimination of the need for coagulation factor concentrates. These trials have also shed light on several concerns around AAV-mediated gene transfer such as the high prevalence of pre-existing immunity against the vector capsid as well as the elevation of liver transaminases that is associated with a loss of FIX transgene expression in some patients. However, this field is advancing very rapidly with the development of increasingly more efficient strategies to overcome some of these obstacles and importantly raise the possibility of a functional cure, which has been long sought after. This review overviews the evolution of gene therapy for haemophilia B over the last two decades.


Asunto(s)
Hemofilia B , Humanos , Hemofilia B/genética , Hemofilia B/terapia , Vectores Genéticos , Terapia Genética , Factor IX/genética , Factor IX/uso terapéutico , Factor IX/metabolismo , Hemorragia/tratamiento farmacológico , Dependovirus/genética , Dependovirus/metabolismo
16.
Hum Gene Ther ; 35(13-14): 477-489, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38420654

RESUMEN

Liver injury with concomitant loss of therapeutic transgene expression can be a clinical sequela of systemic administration of recombinant adeno-associated virus (rAAV) when used for gene therapy, and a significant barrier to treatment efficacy. Despite this, it has been difficult to replicate this phenotype in preclinical models, thereby limiting the field's ability to systematically investigate underlying biological mechanisms and develop interventions. Prior animal models have focused on capsid and transgene-related immunogenicity, but the impact of concurrently present nontransgene or vector antigens on therapeutic efficacy, such as those derived from contaminating nucleic acids within rAAV preps, has yet to be investigated. In this study, using Ad5-CMV_GFP-immunized immunocompetent BALB/cJ mice, and a coagulation factor VIII expressing rAAV preparation that contains green flourescent protein (GFP) cDNA packaged as P5-associated contaminants, we establish a model to induce transaminitis and observe concomitant therapeutic efficacy reduction after rAAV administration. We observed strong epitope-specific anti-GFP responses in splenic CD8+ T cells when GFP cDNA was delivered as a P5-associated contaminant of rAAV, which coincided and correlated with alanine and aspartate aminotransferase elevations. Furthermore, we report a significant reduction in detectable circulating FVIII protein, as compared with control mice. Lastly, we observed an elevation in the detection of AAV8 capsid-specific T cells when GFP was delivered either as a contaminant or transgene to Ad5-CMV_GFP-immunized mice. We present this model as a potential tool to study the underlying biology of post-AAV hepatotoxicity and demonstrate the potential for T cell responses against proteins produced from AAV encapsidated nontherapeutic nucleic acids, to interfere with efficacious gene transfer.


Asunto(s)
Dependovirus , Terapia Genética , Vectores Genéticos , Transgenes , Animales , Dependovirus/genética , Dependovirus/inmunología , Ratones , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Terapia Genética/métodos , Modelos Animales de Enfermedad , Técnicas de Transferencia de Gen , Factor VIII/genética , Factor VIII/inmunología , Hígado/metabolismo , Hígado/patología , Hígado/inmunología , Ratones Endogámicos BALB C , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Expresión Génica , Humanos , Hepatitis/terapia , Hepatitis/inmunología
17.
Blood ; 117(3): 798-807, 2011 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-21041718

RESUMEN

Gene therapy for hemophilia A would be facilitated by development of smaller expression cassettes encoding factor VIII (FVIII), which demonstrate improved biosynthesis and/or enhanced biologic properties. B domain deleted (BDD) FVIII retains full procoagulant function and is expressed at higher levels than wild-type FVIII. However, a partial BDD FVIII, leaving an N-terminal 226 amino acid stretch (N6), increases in vitro secretion of FVIII tenfold compared with BDD-FVIII. In this study, we tested various BDD constructs in the context of either wild-type or codon-optimized cDNA sequences expressed under control of the strong, ubiquitous Spleen Focus Forming Virus promoter within a self-inactivating HIV-based lentiviral vector. Transduced 293T cells in vitro demonstrated detectable FVIII activity. Hemophilic mice treated with lentiviral vectors showed expression of FVIII activity and phenotypic correction sustained over 250 days. Importantly, codon-optimized constructs achieved an unprecedented 29- to 44-fold increase in expression, yielding more than 200% normal human FVIII levels. Addition of B domain sequences to BDD-FVIII did not significantly increase in vivo expression. These significant findings demonstrate that shorter FVIII constructs that can be more easily accommodated in viral vectors can result in increased therapeutic efficacy and may deliver effective gene therapy for hemophilia A.


Asunto(s)
Codón/genética , Factor VIII/genética , Terapia Genética/métodos , Hemofilia A/terapia , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Ensayo de Inmunoadsorción Enzimática , Factor VIII/metabolismo , Femenino , Expresión Génica , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Células HEK293 , Hemofilia A/sangre , Hemofilia A/genética , Humanos , Inyecciones Intravenosas , Lentivirus/genética , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Datos de Secuencia Molecular , Mutación , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Virus Formadores de Foco en el Bazo/genética
18.
Blood Adv ; 7(3): 458-467, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35839077

RESUMEN

Adeno-associated virus (AAV) gene therapy has the potential to functionally cure hemophilia B by restoring factor (F)IX concentrations into the normal range. Next-generation AAV therapies express a naturally occurring gain-of-function FIX variant, FIX-Padua (R338L-FIX), that increases FIX activity (FIX:C) by approximately eightfold compared with wild-type FIX (FIX-WT). Previous studies have shown that R338L-FIX activity varies dramatically across different clinical FIX:C assays, which complicates the monitoring and management of patients. To better understand mechanisms that contribute to R338L-FIX assay discrepancies, we characterized the performance of R338L-FIX in 13 1-stage clotting assays (OSAs) and 2 chromogenic substrate assays (CSAs) in a global field study. This study produced the largest R338L-FIX assay dataset to date and confirmed that clinical FIX:C assay results vary over threefold. Both phospholipid and activating reagents play a role in OSA discrepancies. CSA generated the most divergent FIX:C results. Manipulation of FIX:C CSA kits demonstrated that specific activity gains for R338L-FIX were most profound at lower FIX:C concentrations and that these effects were enhanced during the early phases of FXa generation. Supplementing FX into CSA had the effect of dampening FIX-WT activity relative to R338L-FIX activity, suggesting that FX impairs WT tenase formation to a greater extent than R338L-FIX tenase. Our data describe the scale of R338L-FIX assay discrepancies and provide insights into the causative mechanisms that will help establish best practices for the measurement of R338L-FIX activity in patients after gene therapy.


Asunto(s)
Factor IX , Hemofilia B , Humanos , Factor IX/genética , Hemofilia B/diagnóstico , Hemofilia B/genética , Hemofilia B/terapia , Pruebas de Coagulación Sanguínea , Cisteína Endopeptidasas
19.
J Thromb Haemost ; 21(9): 2405-2417, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37271431

RESUMEN

BACKGROUND: Transplacental delivery of maternal immunoglobulin G (IgG) provides humoral protection during the first months of life until the newborn's immune system reaches maturity. The maternofetal interface has been exploited therapeutically to replace missing enzymes in the fetus, as shown in experimental mucopolysaccharidoses, or to shape adaptive immune repertoires during fetal development and induce tolerance to self-antigens or immunogenic therapeutic molecules. OBJECTIVES: To investigate whether proteins that are administered to pregnant mice or endogenously present in their circulation may be delivered through the placenta. METHODS: We engineered monovalent immunoglobulin G (FabFc) specific for different domains of human factor VIII (FVIII), a therapeutically relevant model antigen. FabFc was injected with exogenous FVIII into pregnant severe hemophilia A mice or pregnant mice expressing human FVIII following AAV8-mediated gene therapy. FabFc and FVIII were detected in the pregnant mice and/or fetuses by enzyme-linked immunosorbent assay and immunohistochemistry. RESULTS: Administration of FabFc to pregnant mice allowed the maternofetal delivery of FVIII in a FcRn-dependent manner. FVIII antigen levels achieved in the fetuses represented 10% of normal plasma levels in the human. We identified antigen/FabFc complex stability, antigen size, and shielding of promiscuous protein patches as key parameters to foster optimal antigen delivery. CONCLUSION: Our results pave the way toward the development of novel strategies for the in utero delivery of endogenous maternal proteins to replace genetically deficient fetal proteins or to educate the immune system and favor active immune tolerance upon protein encounter later in life.


Asunto(s)
Hemofilia A , Inmunoglobulina G , Embarazo , Femenino , Ratones , Humanos , Animales , Factor VIII , Hemofilia A/genética , Hemofilia A/terapia , Placenta , Terapia Genética , Tolerancia Inmunológica
20.
Mol Ther ; 19(5): 876-85, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21245849

RESUMEN

Adeno-associated virus vectors (AAV) show promise for liver-targeted gene therapy. In this study, we examined the long-term consequences of a single intravenous administration of a self-complementary AAV vector (scAAV2/ 8-LP1-hFIXco) encoding a codon optimized human factor IX (hFIX) gene in 24 nonhuman primates (NHPs). A dose-response relationship between vector titer and transgene expression was observed. Peak hFIX expression following the highest dose of vector (2 × 10(12) pcr-vector genomes (vg)/kg) was 21 ± 3 µg/ml (~420% of normal). Fluorescent in-situ hybridization demonstrated scAAV provirus in almost 100% of hepatocytes at that dose. No perturbations of clinical or laboratory parameters were noted and vector genomes were cleared from bodily fluids by 10 days. Macaques transduced with 2 × 10(11) pcr-vg/kg were followed for the longest period (~5 years), during which time expression of hFIX remained >10% of normal level, despite a gradual decline in transgene copy number and the proportion of transduced hepatocytes. All macaques developed serotype-specific antibodies but no capsid-specific cytotoxic T lymphocytes were detected. The liver was preferentially transduced with 300-fold more proviral copies than extrahepatic tissues. Long-term biochemical, ultrasound imaging, and histologic follow-up of this large cohort of NHP revealed no toxicity. These data support further evaluation of this vector in hemophilia B patients.


Asunto(s)
Proteínas de la Cápside/metabolismo , Dependovirus/genética , Factor IX/metabolismo , Terapia Genética/métodos , Hemofilia B/terapia , Animales , Proteínas de la Cápside/genética , Factor IX/genética , Expresión Génica , Vectores Genéticos , Células HEK293 , Hemofilia B/genética , Humanos , Hibridación Fluorescente in Situ , Hígado/metabolismo , Macaca , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA