Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Emerg Infect Dis ; 27(6): 1-9, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34013862

RESUMEN

Human respiratory syncytial virus (HRSV) is the leading viral cause of serious pediatric respiratory disease, and lifelong reinfections are common. Its 2 major subgroups, A and B, exhibit some antigenic variability, enabling HRSV to circulate annually. Globally, research has increased the number of HRSV genomic sequences available. To ensure accurate molecular epidemiology analyses, we propose a uniform nomenclature for HRSV-positive samples and isolates, and HRSV sequences, namely: HRSV/subgroup identifier/geographic identifier/unique sequence identifier/year of sampling. We also propose a template for submitting associated metadata. Universal nomenclature would help researchers retrieve and analyze sequence data to better understand the evolution of this virus.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Niño , Variación Genética , Genotipo , Humanos , Epidemiología Molecular , Filogenia , Virus Sincitial Respiratorio Humano/genética
2.
Mol Ecol ; 25(23): 5994-6008, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27862516

RESUMEN

Over the last decade, the recognized host range of hantaviruses has expanded considerably with the discovery of distinct hantaviruses in shrews, moles and bats. Unfortunately, in-depth studies of these viruses have been limited. Here we describe a comprehensive analysis of the spatial distribution, genetic diversity and evolution of Nova virus, a hantavirus that has the European mole as its natural host. Our analysis demonstrated that Nova virus has a high prevalence and widespread distribution in Belgium. While Nova virus displayed relatively high nucleotide diversity in Belgium, amino acid changes were limited. The nucleocapsid protein was subjected to strong purifying selection, reflecting the strict evolutionary constraints placed upon Nova virus by its host. Spatio-temporal analysis using Bayesian evolutionary inference techniques demonstrated that Nova virus had efficiently spread in the European mole population in Belgium, forming two distinct clades, representing east and west of Belgium. The influence of landscape barriers, in the form of the main waterways, on the dispersal velocity of Nova virus was assessed using an analytical framework for comparing Bayesian viral phylogenies with environmental landscape data. We demonstrated that waterways did not act as an environmental resistance factor slowing down Nova virus diffusion in the mole population. With this study, we provide information about the spatial diffusion of Nova virus and contribute sequence information that can be applied in further functional studies.


Asunto(s)
Infecciones por Hantavirus/veterinaria , Topos/virología , Orthohantavirus/genética , Filogenia , Animales , Teorema de Bayes , Bélgica , Infecciones por Hantavirus/virología , Análisis Espacio-Temporal
3.
Cancers (Basel) ; 14(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35954349

RESUMEN

External quality assessment (EQA) schemes are a tool for clinical laboratories to evaluate and manage the quality of laboratory practice with the support of an independent party (i.e., an EQA provider). Depending on the context, there are different types of EQA schemes available, as well as various EQA providers, each with its own field of expertise. In this review, an overview of the general requirements for EQA schemes and EQA providers based on international guidelines is provided. The clinical and scientific value of these kinds of schemes for clinical laboratories, clinicians and patients are highlighted, in addition to the support EQA can provide to other types of laboratories, e.g., laboratories affiliated to biotech companies. Finally, recent developments and challenges in laboratory medicine and quality management, for example, the introduction of artificial intelligence in the laboratory and the shift to a more individual-approach instead of a laboratory-focused approach, are discussed. EQA schemes should represent current laboratory practice as much as possible, which poses the need for EQA providers to introduce latest laboratory innovations in their schemes and to apply up-to-date guidelines. By incorporating these state-of-the-art techniques, EQA aims to contribute to continuous learning.

4.
Cancers (Basel) ; 14(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35954426

RESUMEN

Increasing data suggests that an intact immune system is required for improvedoutcomes in patients with Human Epidermal Growth Factor Receptor 2 (HER2+) and Triple Negative Breast Cancer (TNBC) [...].

5.
Cancers (Basel) ; 13(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638394

RESUMEN

Patients with advanced triple-negative breast cancer (TNBC) benefit from treatment with atezolizumab, provided that the tumor contains ≥1% of PD-L1/SP142-positive immune cells. Numbers of tumor-infiltrating lymphocytes (TILs) vary strongly according to the anatomic localization of TNBC metastases. We investigated inter-pathologist agreement in the assessment of PD-L1/SP142 immunohistochemistry and TILs. Ten pathologists evaluated PD-L1/SP142 expression in a proficiency test comprising 28 primary TNBCs, as well as PD-L1/SP142 expression and levels of TILs in 49 distant TNBC metastases with various localizations. Interobserver agreement for PD-L1 status (positive vs. negative) was high in the proficiency test: the corresponding scores as percentages showed good agreement with the consensus diagnosis. In TNBC metastases, there was substantial variability in PD-L1 status at the individual patient level. For one in five patients, the chance of treatment was essentially random, with half of the pathologists designating them as positive and half negative. Assessment of PD-L1/SP142 and TILs as percentages in TNBC metastases showed poor and moderate agreement, respectively. Additional training for metastatic TNBC is required to enhance interobserver agreement. Such training, focusing on metastatic specimens, seems worthwhile, since the same pathologists obtained high percentages of concordance (ranging from 93% to 100%) on the PD-L1 status of primary TNBCs.

6.
Influenza Other Respir Viruses ; 14(3): 274-285, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32022426

RESUMEN

BACKGROUND: Human respiratory syncytial virus (RSV) is classified into antigenic subgroups A and B. Thirteen genotypes have been defined for RSV-A and 20 for RSV-B, without any consensus on genotype definition. METHODS: We evaluated clustering of RSV sequences published in GenBank until February 2018 to define genotypes by using maximum likelihood and Bayesian phylogenetic analyses and average p-distances. RESULTS: We compared the patterns of sequence clustering of complete genomes; the three surface glycoproteins genes (SH, G, and F, single and concatenated); the ectodomain and the 2nd hypervariable region of G gene. Although complete genome analysis achieved the best resolution, the F, G, and G-ectodomain phylogenies showed similar topologies with statistical support comparable to complete genome. Based on the widespread geographic representation and large number of available G-ectodomain sequences, this region was chosen as the minimum region suitable for RSV genotyping. A genotype was defined as a monophyletic cluster of sequences with high statistical support (≥80% bootstrap and ≥0.8 posterior probability), with an intragenotype p-distance ≤0.03 for both subgroups and an intergenotype p-distance ≥0.09 for RSV-A and ≥0.05 for RSV-B. In this work, the number of genotypes was reduced from 13 to three for RSV-A (GA1-GA3) and from 20 to seven for RSV-B (GB1-GB7). Within these, two additional levels of classification were defined: subgenotypes and lineages. Signature amino acid substitutions to complement this classification were also identified. CONCLUSIONS: We propose an objective protocol for RSV genotyping suitable for adoption as an international standard to support the global expansion of RSV molecular surveillance.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/genética , Evolución Molecular , Genoma Viral , Genotipo , Humanos , Filogenia , Virus Sincitial Respiratorio Humano/clasificación , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Proteínas Virales/genética
7.
Genome Announc ; 3(4)2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26251483

RESUMEN

The complete genome sequence of Nova virus, a divergent hantavirus, originating from the kidney tissue of a European mole (Talpa europaea) from Belgium was determined. The 3 genomic segments have a total length of 11,979 nucleotides, and nucleotide identities to other Nova viruses are between 80 and 89%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA