Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Neuroinflammation ; 19(1): 177, 2022 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35810304

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) is characterized by a primary mechanical injury and a secondary injury associated with neuroinflammation, blood-brain barrier (BBB) disruption and neurodegeneration. We have developed a novel cannabidiol aminoquinone derivative, VCE-004.8, which is a dual PPARγ/CB2 agonist that also activates the hypoxia inducible factor (HIF) pathway. VCE-004.8 shows potent antifibrotic, anti-inflammatory and neuroprotective activities and it is now in Phase II clinical trials for systemic sclerosis and multiple sclerosis. Herein, we investigated the mechanism of action of VCE-004.8 in the HIF pathway and explored its efficacy in a preclinical model of TBI. METHODS: Using a phosphoproteomic approach, we investigated the effects of VCE-004.8 on prolyl hydroxylase domain-containing protein 2 (PHD2) posttranslational modifications. The potential role of PP2A/B55α in HIF activation was analyzed using siRNA for B55α. To evaluate the angiogenic response to the treatment with VCE-004.8 we performed a Matrigel plug in vivo assay. Transendothelial electrical resistance (TEER) as well as vascular cell adhesion molecule 1 (VCAM), and zonula occludens 1 (ZO-1) tight junction protein expression were studied in brain microvascular endothelial cells. The efficacy of VCE-004.8 in vivo was evaluated in a controlled cortical impact (CCI) murine model of TBI. RESULTS: Herein we provide evidence that VCE-004.8 inhibits PHD2 Ser125 phosphorylation and activates HIF through a PP2A/B55α pathway. VCE-004.8 induces angiogenesis in vivo increasing the formation of functional vessel (CD31/α-SMA) and prevents in vitro blood-brain barrier (BBB) disruption ameliorating the loss of ZO-1 expression under proinflammatory conditions. In CCI model VCE-004.8 treatment ameliorates early motor deficits after TBI and attenuates cerebral edema preserving BBB integrity. Histopathological analysis revealed that VCE-004.8 treatment induces neovascularization in pericontusional area and prevented immune cell infiltration to the brain parenchyma. In addition, VCE-004.8 attenuates neuroinflammation and reduces neuronal death and apoptosis in the damaged area. CONCLUSIONS: This study provides new insight about the mechanism of action of VCE-004.8 regulating the PP2A/B55α/PHD2/HIF pathway. Furthermore, we show the potential efficacy for TBI treatment by preventing BBB disruption, enhancing angiogenesis, and ameliorating neuroinflammation and neurodegeneration after brain injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Cannabidiol , Animales , Barrera Hematoencefálica/metabolismo , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Ratones , Neovascularización Patológica/metabolismo
2.
Mol Cell Neurosci ; 110: 103583, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33338634

RESUMEN

The quinone derivative of the non-psychotropic cannabinoid cannabigerol (CBG), so-called VCE-003.2, has been recently investigated for its neuroprotective properties in inflammatory models of Parkinson's disease (PD) in mice. Such potential derives from its activity at the peroxisome proliferator-activated receptor-γ (PPAR-γ). In the present study, we investigated the neuroprotective properties of VCE-003.2 against the parkinsonian neurotoxin 6-hydroxydopamine (6-OHDA), in comparison with two new CBG-related derivatives, the cannabigerolic acid quinone (CBGA-Q) and its sodium salt CBGA-Q-Salt, which, similarly to VCE-003.2, were found to be active at the PPAR-γ receptor, but not at the cannabinoid CB1 and CB2 receptors. First, we investigated their cytoprotective properties in vitro by analyzing cell survival in cultured SH-SY5Y cells exposed to 6-OHDA. We found an important cytoprotective effect of VCE-003.2 at a concentration of 20 µM, which was not reversed by the blockade of PPAR-γ receptors with GW9662, supporting its activity at an alternative site (non-sensitive to classic antagonists) in this receptor. We also found CBGA-Q and CBGA-Q-Salt being cytoprotective in this cell assay, but their effects were completely eliminated by GW9662, thus indicating that they are active at the canonical site in the PPAR-γ receptor. Then, we moved to in vivo testing using mice unilaterally lesioned with 6-OHDA. Our data confirmed that VCE-003.2 administered orally (20 mg/kg) preserved tyrosine hydroxylase (TH)-positive nigral neurons against 6-OHDA-induced damage, whereas it completely attenuated the astroglial (GFAP) and microglial (CD68) reactivity found in the substantia nigra of lesioned mice. Such neuroprotective effects caused an important recovery in the motor deficiencies displayed by 6-OHDA-lesioned mice in the pole test and the cylinder rearing test. We also investigated CBGA-Q, given orally (20 mg/kg) or intraperitoneally (10 mg/kg, i.p.), having similar benefits compared to VCE-003.2 against the loss of TH-positive nigral neurons, glial reactivity and motor defects caused by 6-OHDA. Lastly, the sodium salt of CBGA-Q, given orally (40 mg/kg) to 6-OHDA-lesioned mice, also showed benefits at behavioral and histopathological levels, but to a lower extent compared to the other two compounds. In contrast, when given i.p., CBGA-Q-Salt (10 mg/kg) was poorly active. We also analyzed the concentrations of dopamine and its metabolite DOPAC in the striatum of 6-OHDA-lesioned mice after the treatment with the different compounds, but recovery in the contents of both dopamine and DOPAC was only found after the treatment with VCE-003.2. In summary, our data confirmed the neuroprotective potential of VCE-003.2 in 6-OHDA-lesioned mice, which adds to its previous activity found in an inflammatory model of PD (LPS-lesioned mice). Additional phytocannabinoid derivatives, CBGA-Q and CBGA-Q-Salt, also afforded neuroprotection in 6-OHDA-lesioned mice, but their effects were lower compared to VCE-003.2, in particular in the case of CBGA-Q-Salt. In vitro studies confirmed the relevance of PPAR-γ receptors for these effects.


Asunto(s)
Antiparkinsonianos/uso terapéutico , Cannabinoides/química , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Quinonas/química , Animales , Antiparkinsonianos/síntesis química , Antiparkinsonianos/farmacología , Línea Celular Tumoral , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/farmacología , Oxidopamina/toxicidad , PPAR gamma/antagonistas & inhibidores , PPAR gamma/metabolismo , Enfermedad de Parkinson/etiología , Sustancia Negra/citología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo
3.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804243

RESUMEN

A growing body of preclinical evidence indicates that certain cannabinoids, including cannabidiol (CBD) and synthetic derivatives, may play a role in the myelinating processes and are promising small molecules to be developed as drug candidates for management of demyelinating diseases such as multiple sclerosis (MS), stroke and traumatic brain injury (TBI), which are three of the most prevalent demyelinating disorders. Thanks to the properties described for CBD and its interesting profile in humans, both the phytocannabinoid and derivatives could be considered as potential candidates for clinical use. In this review we will summarize current advances in the use of CBD and other cannabinoids as future potential treatments. While new research is accelerating the process for the generation of novel drug candidates and identification of druggable targets, the collaboration of key players such as basic researchers, clinicians and pharmaceutical companies is required to bring novel therapies to the patients.


Asunto(s)
Cannabidiol/uso terapéutico , Cannabinoides/uso terapéutico , Cannabis/química , Enfermedades Desmielinizantes/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/patología , Enfermedades Desmielinizantes/patología , Humanos , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/patología
4.
Neurobiol Dis ; 143: 104994, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32599064

RESUMEN

Multiple Sclerosis (MS) is characterized by a combination of inflammatory and neurodegenerative processes in the spinal cord and the brain. Natural and synthetic cannabinoids such as VCE-004.8 have been studied in preclinical models of MS and represent promising candidates for drug development. VCE-004.8 is a multitarget synthetic cannabidiol (CBD) derivative acting as a dual Peroxisome proliferator-activated receptor-gamma/Cannabinoid receptor type 2 (PPARγ/CB2) ligand agonist that also activates the Hypoxia-inducible factor (HIF) pathway. EHP-101 is an oral lipidic formulation of VCE-004.8 that has shown efficacy in several preclinical models of autoimmune, inflammatory, fibrotic, and neurodegenerative diseases. EHP-101 alleviated clinical symptomatology in EAE and transcriptomic analysis demonstrated that EHP-101 prevented the expression of many inflammatory genes closely associated with MS pathophysiology in the spinal cord. EHP-101 normalized the expression of several genes associated with oligodendrocyte function such as Teneurin 4 (Tenm4) and Gap junction gamma-3 (Gjc3) that were downregulated in EAE. EHP-101 treatment prevented microglia activation and demyelination in both the spinal cord and the brain. Moreover, EAE was associated with a loss in the expression of Oligodendrocyte transcription factor 2 (Olig2) in the corpus callosum, a marker for oligodendrocyte differentiation, which was restored by EHP-101 treatment. In addition, EHP-101 enhanced the expression of glutathione S-transferase pi (GSTpi), a marker for mature oligodendrocytes in the brain. We also found that a diet containing 0.2% cuprizone for six weeks induced a clear loss of myelin in the brain measured by Cryomyelin staining and Myelin basic protein (MBP) expression. Moreover, EHP-101 also prevented cuprizone-induced microglial activation, astrogliosis and reduced axonal damage. Our results provide evidence that EHP-101 showed potent anti-inflammatory activity, prevented demyelination, and enhanced remyelination. Therefore, EHP-101 represents a promising drug candidate for the potential treatment of different forms of MS.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Esclerosis Múltiple/patología , Remielinización/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Animales , Cannabinoides/farmacología , Quelantes/toxicidad , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/patología , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Médula Espinal/patología
5.
Curr Hypertens Rep ; 22(12): 98, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33089434

RESUMEN

PURPOSE OF REVIEW: This article provides a concise overview of how cannabinoids and the endocannabinoid system (ECS) have significant implications for the prevention and treatment of metabolic syndrome (MetS) and for the treatment of cardiovascular disorders, including cardiac fibrosis. RECENT FINDINGS: Over the past few years, the ECS has emerged as a pivotal component of the homeostatic mechanisms for the regulation of many bodily functions, including inflammation, digestion, and energy metabolism. Therefore, the pharmacological modulation of the ECS by cannabinoids represents a novel strategy for the management of many diseases. Specifically, increasing evidence from preclinical research studies has opened new avenues for the development of cannabinoid-based therapies for the management and potential treatment of MetS and cardiovascular diseases. Current information indicates that modulation of the ECS can help maintain overall health and well-being due to its homeostatic function. From a therapeutic perspective, cannabinoids and the ECS have also been shown to play a key role in modulating pathophysiological states such as inflammatory, neurodegenerative, gastrointestinal, metabolic, and cardiovascular diseases, as well as cancer and pain. Thus, targeting and modulating the ECS with cannabinoids or cannabinoid derivatives may represent a major disease-modifying medical advancement to achieve successful treatment for MetS and certain cardiovascular diseases.


Asunto(s)
Cannabinoides , Hipertensión , Síndrome Metabólico , Cannabinoides/uso terapéutico , Endocannabinoides , Fibrosis , Humanos , Síndrome Metabólico/tratamiento farmacológico
6.
J Neuroinflammation ; 15(1): 64, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29495967

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is characterized by a combination of inflammatory and neurodegenerative processes variously dominant in different stages of the disease. Thus, immunosuppression is the goal standard for the inflammatory stage, and novel remyelination therapies are pursued to restore lost function. Cannabinoids such as 9Δ-THC and CBD are multi-target compounds already introduced in the clinical practice for multiple sclerosis (MS). Semisynthetic cannabinoids are designed to improve bioactivities and druggability of their natural precursors. VCE-004.8, an aminoquinone derivative of cannabidiol (CBD), is a dual PPARγ and CB2 agonist with potent anti-inflammatory activity. Activation of the hypoxia-inducible factor (HIF) can have a beneficial role in MS by modulating the immune response and favoring neuroprotection and axonal regeneration. METHODS: We investigated the effects of VCE-004.8 on the HIF pathway in different cell types. The effect of VCE-004.8 on macrophage polarization and arginase 1 expression was analyzed in RAW264.7 and BV2 cells. COX-2 expression and PGE2 synthesis induced by lipopolysaccharide (LPS) was studied in primary microglia cultures. The efficacy of VCE-004.8 in vivo was evaluated in two murine models of MS such as experimental autoimmune encephalomyelitis (EAE) and Theiler's virus-induced encephalopathy (TMEV). RESULTS: Herein, we provide evidence that VCE-004.8 stabilizes HIF-1α and HIF-2α and activates the HIF pathway in human microvascular endothelial cells, oligodendrocytes, and microglia cells. The stabilization of HIF-1α is produced by the inhibition of the prolyl-4-hydrolase activity of PHD1 and PDH2. VCE-004.8 upregulates the expression of HIF-dependent genes such as erythropoietin and VEGFA, induces angiogenesis, and enhances migration of oligodendrocytes. Moreover, VCE-004.8 blunts IL-17-induced M1 polarization, inhibits LPS-induced COX-2 expression and PGE2 synthesis, and induces expression of arginase 1 in macrophages and microglia. In vivo experiments showed efficacy of VCE-004.8 in EAE and TMEV. Histopathological analysis revealed that VCE-004.8 treatments prevented demyelination, axonal damage, and immune cells infiltration. In addition, VCE-004.8 downregulated the expression of several genes closely associated with MS physiopathology, including those underlying the production of chemokines, cytokines, and adhesion molecules. CONCLUSIONS: This study provides new significant insights about the potential role of VCE-004.8 for MS treatment by ameliorating neuroinflammation and demyelination.


Asunto(s)
Hipoxia de la Célula/fisiología , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/fisiopatología , Quinonas/metabolismo , Animales , Arginasa/genética , Arginasa/metabolismo , Línea Celular Transformada , Movimiento Celular/genética , Polaridad Celular/efectos de los fármacos , Polaridad Celular/genética , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Neovascularización Patológica , Receptor Cannabinoide CB2/antagonistas & inhibidores
7.
J Neuroinflammation ; 15(1): 19, 2018 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-29338785

RESUMEN

BACKGROUND: Neuroprotection with cannabinoids in Parkinson's disease (PD) has been afforded predominantly with antioxidant or anti-inflammatory cannabinoids. In the present study, we investigated the anti-inflammatory and neuroprotective properties of VCE-003.2, a quinone derivative of the non-psychotrophic phytocannabinoid cannabigerol (CBG), which may derive its activity at the peroxisome proliferator-activated receptor-γ (PPARγ). The compound is also an antioxidant. METHODS: We evaluated VCE-003.2 in an in vivo [mice subjected to unilateral intrastriatal injections of lipopolysaccharide (LPS)] model of PD, as well as in in vitro (LPS-exposed BV2 cells and M-213 cells treated with conditioned media generated from LPS-exposed BV2 cells) cellular models. The type of interaction of VCE-003.2 at the PPARγ receptor was furtherly investigated in bone marrow-derived human mesenchymal stem cells (MSCs) and sustained with transcriptional assays and in silico docking studies. RESULTS: VCE-003.2 has no activity at the cannabinoid receptors, a fact that we confirmed in this study using competition studies. The administration of VCE-003.2 to LPS-lesioned mice attenuated the loss of tyrosine hydroxylase (TH)-containing nigrostriatal neurons and, in particular, the intense microgliosis provoked by LPS in the substantia nigra, measured by Iba-1/Cd68 immunostaining. The analysis by qPCR of proinflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and inducible nitric oxide synthase (iNOS) in the striatum showed they were markedly elevated by the LPS lesion and strongly reduced by the treatment with VCE-003.2. The effects of VCE-003.2 in LPS-lesioned mice implied the activation of PPARγ receptors, as they were attenuated when VCE-003.2 was co-administered with the PPARγ inhibitor T0070907. We then moved to some in vitro approaches, first to confirm the anti-inflammatory profile of VCE-003.2 in cultured BV2 cells exposed to LPS. VCE-003.2 was able to attenuate the synthesis and release of TNF-α and IL-1ß, as well as the induction of iNOS and cyclooxygenase-2 (COX-2) elicited by LPS in these cells. However, we found such effects were not reversed by GW9662, another classic PPARγ antagonist. Next, we investigated the neuroprotective effects of VCE-003.2 in cultured M-213 neuronal cells exposed to conditioned media generated from LPS-exposed cultured BV2 cells. VCE-003.2 reduced M-213 cell death, but again, such effects were not reversed by T0070907. Using docking analysis, we detected that VCE-003.2 binds both the canonical and the alternative binding sites in the PPARγ ligand-binding pocket (LBP). Functional assays further showed that T0070907 almost abolished PPARγ transcriptional activity induced by rosiglitazone (RGZ), but it did not affect the activity of VCE-003.2 in a Gal4-Luc system. However, T0070907 inhibited the effects of RGZ and VCE-003.2 on the expression of PPARγ-dependent genes upregulated in MSCs. CONCLUSIONS: We have demonstrated that VCE-003.2 is neuroprotective against inflammation-driven neuronal damage in an in vivo model of PD and in in vitro cellular models of neuroinflammation. Such effects might involve PPARγ receptors, although in silico and in vitro experiments strongly suggest that VCE-003.2 targets PPARγ by acting through two binding sites at the LBP, one that is sensitive to T0070907 (canonical binding site) and other that is not affected by this PPARγ antagonist (alternative binding site).


Asunto(s)
Cannabinoides/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , PPAR gamma/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Quinonas/uso terapéutico , Animales , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Cannabinoides/farmacología , Línea Celular , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Quinonas/farmacología
8.
Hum Mol Genet ; 20(8): 1509-23, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21266457

RESUMEN

We report a series of 14 patients from 11 kindreds with recessive partial (RP)-interferon (IFN)-γR1 deficiency. The I87T mutation was found in nine homozygous patients from Chile, Portugal and Poland, and the V63G mutation was found in five homozygous patients from the Canary Islands. Founder effects accounted for the recurrence of both mutations. The most recent common ancestors of the patients with the I87T and V63G mutations probably lived 1600 (875-2950) and 500 (200-1275) years ago, respectively. The two alleles confer phenotypes that are similar but differ in terms of IFN-γR1 levels and residual response to IFN-γ. The patients suffered from bacillus Calmette-Guérin-osis (n= 6), environmental mycobacteriosis (n= 6) or tuberculosis (n= 1). One patient did not suffer from mycobacterial infections but had disseminated salmonellosis, which was also present in two other patients. Age at onset of the first environmental mycobacterial disease differed widely between patients, with a mean value of 11.25 ± 9.13 years. Thirteen patients survived until the age of 14.82 ± 11.2 years, and one patient died at the age of 7 years, 9 days after the diagnosis of long-term Mycobacterium avium infection and the initiation of antimycobacterial treatment. Up to 10 patients are currently free of infection with no prophylaxis. The clinical heterogeneity of the 14 patients was not clearly related to either IFNGR1 genotype or the resulting cellular phenotype. RP-IFN-γR1 deficiency is, thus, more common than initially thought and should be considered in both children and adults with mild or severe mycobacterial diseases.


Asunto(s)
Predisposición Genética a la Enfermedad , Infecciones por Mycobacterium/genética , Receptores de Interferón/deficiencia , Adolescente , Adulto , Secuencia de Aminoácidos , Niño , Preescolar , Femenino , Efecto Fundador , Genes Recesivos , Haplotipos , Humanos , Interferón gamma/metabolismo , Masculino , Datos de Secuencia Molecular , Monocitos/metabolismo , Mutación Missense , Infecciones por Mycobacterium/inmunología , Infecciones por Mycobacterium/microbiología , Mycobacterium avium , Mycobacterium bovis , Osteomielitis/genética , Osteomielitis/microbiología , Linaje , Fenotipo , Fosforilación , Neumonía Bacteriana/genética , Transporte de Proteínas , Receptores de Interferón/genética , Receptores de Interferón/inmunología , Factor de Transcripción STAT1/metabolismo , Salmonella , Infecciones por Salmonella/genética , Tuberculosis/genética , Tuberculosis/microbiología , Tuberculosis/mortalidad , Adulto Joven , Receptor de Interferón gamma
9.
Biomed Pharmacother ; 162: 114715, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37075665

RESUMEN

One of the main global causes of mortality and morbidity is traumatic brain injury (TBI). Neuroinflammation and brain-blood barrier (BBB) disruption play a pivotal role in the pathogenesis of acute and chronic TBI onset. The activation of the hypoxia pathway is a promising approach for CNS neurodegenerative diseases, including TBI. Herein, we have studied the efficacy of VCE-005.1, a betulinic acid hydroxamate, against acute neuroinflammation in vitro and on a TBI mouse model. The effect of VCE-005.1 on the HIF pathway in endothelial vascular cells was assessed by western blot, gene expression, in vitro angiogenesis, confocal analysis and MTT assays. In vivo angiogenesis was evaluated through a Matrigel plug model and a mouse model of TBI induced by a controlled cortical impact (CCI) was used to assess VCE-005.1 efficacy. VCE-005.1 stabilized HIF-1α through a mechanism that involved AMPK and stimulated the expression of HIF-dependent genes. VCE-005.1 protected vascular endothelial cells under prooxidant and pro-inflammatory conditions by enhancing TJ protein expression and induced angiogenesis both in vitro and in vivo. Furthermore, in CCI model, VCE-005.1 greatly improved locomotor coordination, increased neovascularization and preserved BBB integrity that paralleled with a large reduction of peripheral immune cells infiltration, recovering AMPK expression and reducing apoptosis in neuronal cells. Taken together, our results demonstrate that VCE-005.1 is a multitarget compound that shows anti-inflammatory and neuroprotective effects mainly by preventing BBB disruption and has the potential to be further developed pharmacologically in TBI and maybe other neurological conditions that concur with neuroinflammation and BBB disruption.


Asunto(s)
Ácido Betulínico , Lesiones Traumáticas del Encéfalo , Ratones , Animales , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Enfermedades Neuroinflamatorias , Proteínas Quinasas Activadas por AMP/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Hipoxia/patología , Ratones Endogámicos C57BL
10.
J Exp Med ; 219(10)2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36094518

RESUMEN

Human cells homozygous for rare loss-of-expression (LOE) TYK2 alleles have impaired, but not abolished, cellular responses to IFN-α/ß (underlying viral diseases in the patients) and to IL-12 and IL-23 (underlying mycobacterial diseases). Cells homozygous for the common P1104A TYK2 allele have selectively impaired responses to IL-23 (underlying isolated mycobacterial disease). We report three new forms of TYK2 deficiency in six patients from five families homozygous for rare TYK2 alleles (R864C, G996R, G634E, or G1010D) or compound heterozygous for P1104A and a rare allele (A928V). All these missense alleles encode detectable proteins. The R864C and G1010D alleles are hypomorphic and loss-of-function (LOF), respectively, across signaling pathways. By contrast, hypomorphic G996R, G634E, and A928V mutations selectively impair responses to IL-23, like P1104A. Impairment of the IL-23-dependent induction of IFN-γ is the only mechanism of mycobacterial disease common to patients with complete TYK2 deficiency with or without TYK2 expression, partial TYK2 deficiency across signaling pathways, or rare or common partial TYK2 deficiency specific for IL-23 signaling.


Asunto(s)
Síndrome de Job , TYK2 Quinasa , Humanos , Interferón gamma/metabolismo , Interleucina-23 , Síndrome de Job/genética , TYK2 Quinasa/deficiencia , TYK2 Quinasa/genética , TYK2 Quinasa/metabolismo
11.
Biomed Pharmacother ; 142: 112007, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34385107

RESUMEN

Some cannabinoids showed anti-inflammatory and antifibrotic activities. EHP-101 is an oral lipidic formulation of the novel non-psychotropic cannabidiol aminoquinone VCE-004.8, which showed antifibrotic activity in murine models of systemic sclerosis induced by bleomycin. We herein examined the effect of EHP-101 on cardiac and other organ fibrosis in a mouse model induced by Angiotensin II. VCE-004.8 inhibited TGFß- and Ang II-induced myofibroblast differentiation in cardiac fibroblasts detected by α-SMA expression. VCE-004.8 also inhibited Ang II-induced ERK 1 + 2 phosphorylation, NFAT activation and mRNA expression of IL1ß, IL6, Col1A2 and CCL2 in cardiac fibroblasts. Mice infused with Ang II resulted in collagen accumulation in left ventricle, aortic, dermal, renal and pulmonary tissues; oral administration of EHP-101, Ajulemic acid and Losartan improved these phenotypes. In myocardial tissue, Ang II induced infiltration of T cells and macrophages together with the accumulation of collagen and Tenascin C; those were all reduced by either EHP-101 or Losartan treatment. Cardiac tissue RNA-Seq analyses revealed a similar transcriptomic signature for both treatments for inflammatory and fibrotic pathways. However, the gene set enrichment analysis comparing data from EHP-101 vs Losartan showed specific hallmarks modified only by EHP-101. Specifically, EHP-101 inhibited the expression of genes such as CDK1, TOP2A and MKi67 that are regulated to the E2 factor family of transcription factors. This study suggests that the oral administration of EHP-101 prevents and inhibits cardiac inflammation and fibrosis. Furthermore, EHP-101 inhibits renal, pulmonary and dermal fibrosis. EHP-101 could offer new opportunities in the treatment of cardiac fibrosis and other fibrotic diseases.


Asunto(s)
Antiinflamatorios/farmacología , Cannabidiol/farmacología , Inflamación/tratamiento farmacológico , Miofibroblastos/efectos de los fármacos , Administración Oral , Angiotensina II/toxicidad , Animales , Antiinflamatorios/química , Cannabidiol/química , Fibroblastos/citología , Fibrosis/tratamiento farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/patología , Losartán/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/citología , Miocardio/patología , Miofibroblastos/citología
12.
J Nat Prod ; 73(3): 447-51, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20121237

RESUMEN

Spurred by the paradoxical anti-inflammatory activity of some aminoacylphorbol derivatives, the naturally occurring and epimeric N,N-dimethylvalinoyl-4alpha-4-deoxyphorbol derivatives 3b and 3d have been prepared from 4alpha-4-deoxyphorbol (3e), a byproduct of the isolation of phorbol from Croton oil and a phorboid polyol so far largely overlooked in terms of biological activity. The configuration of the side chain stereocenter was confirmed for both natural products, and to investigate the side chain structure-activity relationships within this class of compounds, their corresponding N,N-dimethylglycinate (3g) and nor (3h) and di-nor derivatives (3i, 3j) were also prepared. By using a PKC-sensitive model of HIV-1 latency (activation of HIV- gene expression in Jurkat-LAT-GFP cells), it was found that both 3b and 3d can activate PKC-dependent responses, while a series of experiments with isoform-specific PKC inhibitors showed that these compounds target PKCalpha and -delta. Both N,N-dimethylation and the presence of side chain alpha-substitution were critical for activity. Selective PKC binding, rather than COX inhibition, might explain the paradoxical anti-inflammatory activity of extracts containing aminoacylphorboids in the mouse ear edema assay.


Asunto(s)
Inhibidores de la Ciclooxigenasa/farmacología , VIH-1/genética , Modelos Biológicos , Forboles/síntesis química , Forboles/farmacología , Proteína Quinasa C/antagonistas & inhibidores , Animales , Fármacos Anti-VIH/farmacología , Antiinflamatorios/farmacología , Relación Dosis-Respuesta a Droga , Edema/inducido químicamente , Edema/tratamiento farmacológico , VIH-1/fisiología , Humanos , Células Jurkat , Ratones , Estructura Molecular , Forboles/química , Isoformas de Proteínas , Proteína Quinasa C/metabolismo , Relación Estructura-Actividad , Latencia del Virus/efectos de los fármacos
13.
J Neurochem ; 109(2): 452-64, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19200337

RESUMEN

It is widely accepted that neuroinflammation is a key player in various pathological events associated with brain injury. More specifically, glial activation and the subsequent release of pro-inflammatory cytokines, reactive oxygen species (ROS), and prostaglandins play a role of paramount importance in cerebral damage. In this study, we examined the role of two endocannabinoids, anandamide (AEA) and N-arachidonoyldopamine (NADA) in the regulation of prostaglandin E(2) (PGE(2)) synthesis in primary glial cells. We show that NADA is a potent inhibitor of PGE(2) synthesis in lipopolysaccharide (LPS) stimulated cells, without modifying the expression or enzymatic activity of COX-2 and the production of prostaglandin D(2). We also show that NADA has the ability to prevent the free radical formation in primary microglial cells. The key findings of this investigation are our observation that AEA and NADA have opposite effects on glial cells and, most importantly, the first description of NADA as a potential antioxidative and anti-inflammatory agent acting through a mechanism that involves reduction in the synthesis of microsomal prostaglandin E synthase in LPS-activated microglia. These findings provide new mechanistic insights into the anti-inflammatory activities of NADA in the CNS and its potential to design novel therapeutic strategies to manage neuroinflammatory diseases.


Asunto(s)
Ácidos Araquidónicos/fisiología , Dinoprostona/análogos & derivados , Dinoprostona/biosíntesis , Dopamina/análogos & derivados , Isoprostanos/biosíntesis , Neuroglía/metabolismo , Animales , Animales Recién Nacidos , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/fisiología , Ácidos Araquidónicos/química , Ácidos Araquidónicos/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Dinoprostona/química , Dinoprostona/metabolismo , Dopamina/química , Dopamina/metabolismo , Dopamina/fisiología , Endocannabinoides , Isomerismo , Isoprostanos/química , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuroglía/química , Neuroglía/efectos de los fármacos , Alcamidas Poliinsaturadas/química , Alcamidas Poliinsaturadas/metabolismo , Ratas , Ratas Sprague-Dawley
14.
Biochem Pharmacol ; 163: 321-334, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30825431

RESUMEN

The endocannabinoid system (ECS) may play a role in the pathophysiology of systemic sclerosis (SSc). Cannabinoids acting as dual PPARγ/CB2 agonists, such as VCE-004.8 and Ajulemic acid (AjA), have been shown to alleviate skin fibrosis and inflammation in SSc models. Since both compounds are being tested in humans, we compared their activities in the bleomycin (BLM) SSc model. Specifically, the pharmacotranscriptomic signature of the compounds was determined by RNA-Seq changes in the skin of BLM mice treated orally with AjA or EHP-101, a lipidic formulation of VCE-004.8. While both compounds down-regulated the expression of genes involved in the inflammatory and fibrotic components of the disease and the pharmacotranscriptomic signatures were similar for both compounds in some pathways, we found key differences between the compounds in vasculogenesis. Additionally, we found 28 specific genes with translation potential by comparing with a list of human scleroderma genes. Immunohistochemical analysis revealed that both compounds prevented fibrosis, collagen accumulation and Tenascin C (TNC) expression. The endothelial CD31+/CD34+ cells and telocytes were reduced in BLM mice and restored only by EHP-101 treatment. Finally, differences were found in plasmatic biomarker analysis; EHP-101, but not AjA, enhanced the expression of some factors related to angiogenesis and vasculogenesis. Altogether the results indicate that dual PPARγ/CB2 agonists qualify as a novel therapeutic approach for the treatment of SSc and other fibrotic diseases. EHP-101 demonstrated unique mechanisms of action related to the pathophysiology of SSc that could be beneficial in the treatment of this complex disease without current therapeutic options.


Asunto(s)
Cannabinoides/farmacología , Dronabinol/análogos & derivados , Regulación de la Expresión Génica/efectos de los fármacos , Hidroquinonas/farmacología , PPAR gamma/agonistas , Receptor Cannabinoide CB2/agonistas , Esclerodermia Sistémica/tratamiento farmacológico , Animales , Biomarcadores , Bleomicina/toxicidad , Dronabinol/administración & dosificación , Dronabinol/farmacología , Femenino , Fibrosis/inducido químicamente , Hidroquinonas/administración & dosificación , Ratones , Ratones Endogámicos BALB C , PPAR gamma/genética , PPAR gamma/metabolismo , Fibrosis Pulmonar , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo , Piel/efectos de los fármacos , Piel/patología
15.
Front Pharmacol ; 10: 1284, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824305

RESUMEN

Background: As a library of cannabinoid (CB) derivatives with (-)-trans-cannabidiol (CBD) or (-)-trans-cannabidivarin (CBDV) scaffold, we synthesized nine novel cannabinoids: 2-hydroxyethyl cannabidiolate (2-HEC), 2-hydroxypentyl cannabidiolate (2-HPC), 2,3-dihydroxypropyl cannabidiolate (GCBD), cyclohexyl cannabidiolate (CHC), n-hexyl-cannabidiolate (HC), 2-(methylsulfonamido)ethyl cannabidiolate (NMSC), 2-hydroxyethyl cannabidivarinolate (2-HECBDV), cyclohexyl cannabidivarinolate (CHCBDV), and n-hexyl cannabidivarinolate (HCBDV). Their binding and intrinsic effects at the CB1- and CB2-receptors and the effects on inflammatory signaling cascades were investigated in in vitro and ex vivo cell models. Materials and Methods: Binding affinity was studied in membranes isolated from CB-receptor-transfected HEK293EBNA cells, intrinsic functional activity in Chinese hamster ovary (CHO) cells, and activation of nuclear factor κB (NF-κB) and nuclear factor of activated T-cells (NFAT) in phorbol 12-myristate 13-acetate (PMA)/ionomycin (IO)-treated Jurkat T-cells. Inhibition of interleukin (IL)-17-induced pro-inflammatory cytokines and chemokines [IL-6, IL-1ß, CC-chemokine ligand 2 (CCL2), and tumor necrosis factor (TNF)-α] was studied in RAW264.7 macrophages at the RNA level. Pro-inflammatory cytokine (IL-1ß, IL-6, IL-8, and TNF-α) expression and prostaglandin E2 (PGE2) expression were investigated at the protein level in lipopolysaccharide (LPS)-treated primary human monocytes. Results: Derivatives with long aliphatic side chains at the ester position at R1 [HC (5)] as well as the ones with polar side chains [2-HECBDV (7), NMSC (6), and 2-HEC (1)] can be selective for CB2-receptors. The CBDV-derivatives HCBDV and CHCBDV demonstrated specific binding at CB1- and CB2-receptors at nanomolar concentrations. 2-HEC, 2-HPC, GCBD, and NMSC were agonists at CB2-receptor and antagonists at CB1-receptor. CHC bound both receptors at submicromolar ranges and was an agonist for these receptors. 2-HECBDV was an agonist at CB2-receptor and an antagonist at the CB1-receptor despite its modest affinity at this receptor (micromolar range). NMSC inhibited NF-κB and NFAT activity, and 2-HEC, 2-HPC, and GCBD dose-dependently inhibited PMA/IO-stimulated NFAT activation. CHC and HC dose-dependently reduced IL-1ß and CCL2 messenger RNA (mRNA) expression. NMSC inhibited IL-1ß, CCL2, and TNF-α at lower doses. At higher doses, it induced a pronounced increase in IL-6 mRNA. 2-HEC, 2-HPC, and GCBD dose-dependently inhibited LPS-induced IL-1ß, TNF-α, and IL-6 synthesis. NMSC further increased LPS-stimulated IL-1ß release but inhibited IL-8, TNF-α, and PGE2. Conclusion: The CBD- and CBDV-derivatives studied are suitable for targeting CB-receptors. Some may be used as selective CB2 agonists. The length of the aliphatic rest at R2 of CBD (pentyl) and CBDV (propyl) did not correlate with the binding affinity. Higher polarity at R1 appeared to favor the agonistic activity at CB2-receptors.

16.
Transl Neurodegener ; 8: 9, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30899454

RESUMEN

BACKGROUND: The administration of certain cannabinoids provides neuroprotection in models of neurodegenerative diseases by acting through various cellular and molecular mechanisms. Many cannabinoid actions in the nervous system are mediated by CB1 receptors, which can elicit psychotropic effects, but other targets devoid of psychotropic activity, including CB2 and nuclear PPARγ receptors, can also be the target of specific cannabinoids. METHODS: We investigated the pro-neurogenic potential of the synthetic cannabigerol derivative, VCE-003.2, in striatal neurodegeneration by using adeno-associated viral expression of mutant huntingtin in vivo and mouse embryonic stem cell differentiation in vitro. RESULTS: Oral administration of VCE-003.2 protected striatal medium spiny neurons from mutant huntingtin-induced damage, attenuated neuroinflammation and improved motor performance. VCE-003.2 bioavailability was characterized and the potential undesired side effects were evaluated by analyzing hepatotoxicity after chronic treatment. VCE-003.2 promoted subventricular zone progenitor mobilization, increased doublecortin-positive migrating neuroblasts towards the injured area, and enhanced effective neurogenesis. Moreover, we demonstrated the proneurogenic activity of VCE-003.2 in embryonic stem cells. VCE-003.2 was able to increase neuroblast formation and striatal-like CTIP2-mediated neurogenesis. CONCLUSIONS: The cannabigerol derivative VCE-003.2 improves subventricular zone-derived neurogenesis in response to mutant huntingtin-induced neurodegeneration, and is neuroprotective by oral administration.

17.
Plants (Basel) ; 7(1)2018 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-29495393

RESUMEN

Immulina®, a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis (Spirulina) is a potent activator of innate immune cells. On the other hand, it is well documented that Spirulina exerts anti-inflammatory effects and showed promising effects with respect to the relief of allergic rhinitis symptoms. Taking into account these findings, we decided to elucidate whether Immulina®, and immunLoges® (a commercial available multicomponent nutraceutical with Immulina® as a main ingredient) beyond immune-enhancing effects, might also exert inhibitory effects in the induced allergic inflammatory response and on histamine release from RBL-2H3 mast cells. Our findings show that Immulina® and immunLoges® inhibited the IgE-antigen complex-induced production of TNF-α, IL-4, leukotrienes and histamine. The compound 48/80 stimulated histamine release in RBL-2H3 cells was also inhibited. Taken together, our results showed that Immulina® and immunLoges® exhibit anti-inflammatory properties and inhibited the release of histamine from mast cells.

18.
Biochem Pharmacol ; 157: 304-313, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30076848

RESUMEN

Systemic sclerosis (SSc) or scleroderma is a chronic multi-organ autoimmune disease characterized by vascular, immunological, and fibrotic abnormalities. The etiology of SSc is unknown, but there is growing evidence that dysfunction of the endocannabinoid system (ECS) plays a critical role in its development. Since the semi-synthetic cannabinoquinoid VCE-004.8 could alleviate bleomycin (BLM)-induced skin fibrosis, we have investigated an oral lipid formulation (EHP-101) of this dual PPARγ/CB2 receptors activator for the prevention of skin- and lung fibrosis and of collagen accumulation in BLM challenged mice. Immunohistochemistry analysis of the skin showed that EHP-101 could prevent macrophage infiltration as well as the expression of Tenascin C (TNC), vascular cell adhesion molecule 1 (VCAM1), and the α-smooth muscle actin (SMA). EHP-101 could also prevent the reduced expression of vascular CD31 typical of skin fibrosis. RNAseq analysis of skin biopsies showed a clear effect of EHP-101 in the inflammatory and epithelial-mesenchymal transition transcriptomic signatures. TGF-ß-regulated genes [matrix metalloproteinase-3 (Mmp3), cytochrome b-245 heavy chain (Cybb), lymphocyte antigen 6E (Ly6e), vascular cell adhesion molecule-1 (Vcam1) and Integrin alpha-5 (Itga5)] were induced in BLM mice and repressed by EHP-101 treatment. By intersecting differentially expressed genes in EHP-101-treated mice with a dataset of human scleroderma intrinsic genes, 53 overlapped genes were discovered, including biomarkers of SSc like the C-C motif chemokine 2 (Ccl2) and the interleukin 13 receptor subunit alpha 1 (IL-13Ra1) genes. Taken together, these data provide a rationale for further developing VCE-004.8 as an orally active agent to alleviate scleroderma and, possibly, other fibrotic diseases as well.


Asunto(s)
Cannabidiol/análogos & derivados , Pulmón/patología , Piel/patología , Administración Oral , Animales , Bleomicina , Vasos Sanguíneos/efectos de los fármacos , Colágeno/análisis , Femenino , Fibrosis , Pulmón/efectos de los fármacos , Ratones Endogámicos BALB C , Fenotipo , Quinonas/administración & dosificación , Quinonas/uso terapéutico , Piel/irrigación sanguínea , Piel/efectos de los fármacos , Piel/metabolismo , Transcriptoma/efectos de los fármacos
19.
Sci Rep ; 8(1): 16092, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30382123

RESUMEN

Over the past few years, the endocannabinoid system (ECs) has emerged as a crucial player for the regulation of food intake and energy metabolism, and its pharmacological manipulation represents a novel strategy for the management of metabolic diseases. The discovery that VCE-004.8, a dual PPARγ and CB2 receptor agonist, also inhibits prolyl-hydroxylases (PHDs) and activates the HIF pathway provided a rationale to investigate its effect in in vitro models of adipogenesis and in a murine model of metabolic syndrome, all processes critically regulated by these targets of VCE-004.8. In accordance with its different binding mode to PPARγ compared to rosiglitazone (RGZ), VCE-004.8 neither induced adipogenic differentiation, nor affected osteoblastogenesis. Daily administration of VCE-004.8 (20 mg/kg) to HFD mice for 3-wks induced a significant reduction in body weight gain, total fat mass, adipocyte volume and plasma triglycerides levels. VCE-004.8 could also significantly ameliorate glucose tolerance, reduce leptin levels (a marker of adiposity) and increase adiponectin and incretins (GLP-1 and GIP) levels. Remarkably, VCE-004.8 increased the FGF21 mRNA expression in white and brown adipose, as well as in a BAT cell line, qualifying cannabinoaminoquinones as a class of novel therapeutic candidates for the management of obesity and its common metabolic co-morbidities.


Asunto(s)
Adipogénesis/efectos de los fármacos , Cannabidiol/uso terapéutico , Obesidad/tratamiento farmacológico , Obesidad/prevención & control , Adiposidad/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Composición Corporal/efectos de los fármacos , Cannabidiol/farmacología , Diferenciación Celular/efectos de los fármacos , Dieta Alta en Grasa , Conducta Alimentaria , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Células HEK293 , Hormonas/metabolismo , Humanos , Resistencia a la Insulina , Masculino , Ratones Endogámicos C57BL , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , PPAR gamma/agonistas , PPAR gamma/metabolismo , Aumento de Peso/efectos de los fármacos
20.
Biochem Pharmacol ; 73(7): 1013-23, 2007 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-17196940

RESUMEN

AM404 is a synthetic TRPV1/CB(1) hybrid ligand with inhibitory activity on the anandamide transporter and is used for the pharmacological manipulation of the endocannabinoid system. It has been recently described that acetaminophen is metabolised in the brain to form the bioactive N-acylphenolamine AM404 and therefore, we have evaluated the effect of this metabolite in human T cells, discovering that AM404 is a potent inhibitor of TCR-mediated T-cell activation. Moreover, we found that AM404 specifically inhibited both IL-2 and TNF-alpha gene transcription and TNF-alpha synthesis in CD3/CD28-stimulated Jurkat T cells in a FAAH independent way. To further characterize the biochemical inhibitory mechanisms of AM404, we examined the signaling pathways that regulate the activation of the transcription factors NF-kappaB, NFAT and AP-1 in Jurkat cells. We found that AM404 inhibited both the binding to DNA and the transcriptional activity of endogenous NFAT and the transcriptional activity driven by the over expressed fusion protein Gal4-NFAT (1-415). However, AM404 did not affect early steps in NFAT signaling such as CD3-induced calcium mobilization and NFAT1 dephosphorylation. The NFAT inhibitory activity of AM404 seems to be quite specific since this compound did not interfere with the signaling pathways leading to AP-1 or NF-kappaB activation. These findings provide new mechanistic insights into the immunological effects of AM404 which in part could explain some of the activities ascribed to the widely used acetaminophen.


Asunto(s)
Ácidos Araquidónicos/farmacología , Factores de Transcripción NFATC/antagonistas & inhibidores , Acetaminofén/química , Humanos , Células Jurkat , Proteínas Nucleares , Factor de Transcripción AP-1/metabolismo , Transcripción Genética/efectos de los fármacos , Transcripción Genética/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA