Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39124006

RESUMEN

Salinity is a very important parameter from an environmental perspective, and therefore, efficient and accurate systems are required for marine environmental monitoring and productive industries. A plasmonic sensor based on doubly deposited tapered optical fibers (DLUWTs-double-layer uniform-waist tapers) for the measurement of salinity is presented. The physical principle of the sensor, as well as its structure, is discussed, and its performance is experimentally demonstrated, obtaining very good sensitivities. The possibility of shifting towards higher wavelength measuring ranges associated with DLUWTs is also exploited. At the same time, we have considered the necessity of an extensive characterization of the behavior of the refractive index of salty water, both with variations in temperature and the composition of the salts dissolved. This is important due to the somehow changing reality of salinity measurements and the possibility of establishing new approaches for the determination of absolute salinity as opposed to practical salinity based on electrical conductivity measurements. The results obtained, which show high sensitivity and a good performance in general without the need for the use of semi-empirical algorithms, permit, in our opinion, an advance in the tendency towards refractometric determination of salinity with optical sensors apt for in situ, real-time, accurate measurements in realistic measuring conditions.

2.
Sensors (Basel) ; 23(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37112439

RESUMEN

Graphene-based materials have been increasingly incorporated to optical fiber plasmonic sensors due to the peculiar physical and chemical properties of these materials (hardness and flexibility, high electrical and thermal conductivity, and very good adsorption for many substances, etc.). In this paper, we theoretically and experimentally showed how the addition of graphene oxide (GO) to optical fiber refractometers permits the development of surface plasmon resonance (SPR) sensors with very good characteristics. We used doubly deposited uniform-waist tapered optical fibers (DLUWTs) as supporting structures because of their already proven good performance. The presence of GO as an effective third layer is useful to tune the wavelength of the resonances. In addition, the sensitivity was improved. We depict the procedures for the production of the devices and characterize the GO+DLUWTs produced in this way. We also showed how the experimental results are in agreement with the theoretical predictions and used these to estimate the thickness of deposited GO. Finally, we compared the performance of our sensors with other ones that have been recently reported, showing that our results are among the best reported. Using GO as the medium in contact with the analyte, in addition to the good overall performance of devices, permit consideration of this option as an interesting possibility for the future development of SPR-based fiber sensors.

3.
Sensors (Basel) ; 14(3): 4791-805, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24618726

RESUMEN

A review of the surface plasmon resonance (SPR) transducers based on tapered fibers that have been developed in the last years is presented. The devices have proved their good performance (specifically, in terms of sensitivity) and their versatility and they are a very good option to be considered as basis for any kind of chemical and biological sensor. The technology has now reached its maturity and here we summarize some of the characteristics of the devices produced.


Asunto(s)
Fibras Ópticas , Resonancia por Plasmón de Superficie/instrumentación , Absorción de Radiación , Fenómenos Ópticos
4.
Appl Opt ; 45(28): 7294-8, 2006 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16983417

RESUMEN

We present a configuration for surface plasmon resonance sensors based on uniform-waist tapered optical fibers and reflective elements. Once the fiber is tapered fulfilling the adiabatic criterion, a multilayer including a metallic medium is asymmetrically deposited on the uniform waist of the fiber. This feature provides the resonant excitation of multiple surface plasma waves. In addition, a mirror is produced at the fiber tip by a chemical Tollens reaction. In this way, the sensor operates in a reflective mode, more convenient for dip probes. When these sensors are spectrally interrogated, a high sensitivity of 10-4 refractive index units per nanometer is attained. These devices can be advantageously used for any kind of chemical sensing and biosensing.

5.
Opt Lett ; 31(21): 3089-91, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17041644

RESUMEN

A new concept of surface plasmon resonance fiber optic sensor is presented. By tuning the plasmon resonance to a wavelength for which the outer medium is absorptive, a significant variation of the spectral transmittance of the device is produced as a function of the concentration of the analyte. With this mechanism, selectivity can be achieved without the need of any functionalization of the surfaces or the use of recognizing elements, which is a very interesting feature for any kind of chemical sensor or biosensor. Doubly deposited uniform-waist tapered fibers are well suited for the development of these new sensors. Multiple surface plasmon resonance, obtainable in those structures, can be used for the development of microspectrometers based on this principle.

6.
Appl Opt ; 44(4): 519-26, 2005 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-15726948

RESUMEN

Novel devices consisting of uniform-waist tapered optical fibers with asymmetric double-layer (metal plus dielectric) depositions have been recently proposed as refractive-index sensors. We study the properties of light transmission by use of this kind of devices, and we specifically perform a detailed study of the generation of surface-plasma waves in the structures. We show that multiple surface plasmons are excited for specific combinations of the constructive parameters of the devices and for specific ranges of the refractive index of the surrounding medium. The behavior also depends on the wavelength and the state of polarization of the incident light. The use of uniform-waist tapers allows for control of constructive parameters and an increase in the interaction length with the outer medium. We show how the plasmons are excited in the region of the taper waist by a coupling with the cladding modes guided in that area. This characterization shows the importance of the presence of a dielectric layer for selection of the operating range of the device. The results are useful for the design of new sensors.

7.
Appl Opt ; 43(8): 1615-20, 2004 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-15046161

RESUMEN

A novel, to our knowledge, device based on a tapered optical fiber with a double-layer deposition including a metallic media is presented, and its properties are studied. The main novelty of the device consists of the introduction of a dielectric layer, whereas the systems depicted in the literature are simply metal-coated tapered fibers. The presence of the dielectric layer permits one to tune the response of the device to the refractive index of the surrounding medium. We have proved the suitability of this scheme for refractive-index sensing by depicting two measurement modes, namely, total power attenuation and spectral transmittance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA