Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genes (Basel) ; 13(12)2022 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-36553493

RESUMEN

The world population is genetically predisposed to metabolic syndrome (MetS) and its components, also known as cardiometabolic risk phenotypes, which can cause severe health complications including coronary heart disease (CHD). Genetic variants in the 9p21 locus have been associated with CHD in a number of populations including Pakistan. However, the role of the 9p21 locus in MetS and cardiometabolic risk phenotypes (such as obesity, hypertension, hyperglycemia, and dyslipidemia) in populations with CHD or no established CHD has not been explored. Therefore, the present study was designed to explore the association of the minor/risk allele (C) of 9p21 locus SNP rs1333049 with MetS or its risk phenotypes regardless of an established CHD, in Pakistani subjects. Genotyping of rs1333049 (G/C) was performed on subjects under a case-control study design; healthy controls and cases, MetS with CHD (MetS-CHD+) and MetS with no CHD (MetS-CHD-), respectively. Genotype and allele frequencies were calculated in all study groups. Anthropometric and clinical variables (Means ± SD) were compared among study groups (i.e., controls, MetS + CHD and MetS-CHD) and minor/risk C allele carriers (GC + CC) vs. non-carriers (Normal GG genotype). Associations of the risk allele of rs1333049 SNP with disease and individual metabolic risk components were explored using adjusted multivariate logistic regression models (OR at 95% CI) with a threshold p-value of ≤0.05. Our results have shown that the minor allele frequency (MAF) was significantly high in the MAF cases (combined = 0.63, MetS-CHD+ = 0.57 and MetS-CHD- = 0.57) compared with controls (MAF = 0.39). The rs1333049 SNP significantly increased the risk of MetS, irrespective of CHD (MetS-CHD+ OR = 2.36, p < 0.05 and MetS-CHD- OR = 4.04, p < 0.05), and cardiometabolic risk phenotypes; general obesity, central obesity, hypertension, and dyslipidemia (OR = 1.56-3.25, p < 0.05) except hyperglycemia, which lacked any significant association (OR = 0.19, p = 0.29) in the present study group. The 9p21 genetic locus/rs1333049 SNP is strongly associated with, and can be a genetic predictor of, MetS and cardiometabolic risks, irrespective of cardiovascular diseases in the Pakistani population.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad Coronaria , Hipertensión , Síndrome Metabólico , Humanos , Síndrome Metabólico/genética , Estudios de Casos y Controles , Polimorfismo de Nucleótido Simple , Enfermedad Coronaria/genética , Enfermedad Coronaria/epidemiología , Fenotipo , Obesidad
2.
Plants (Basel) ; 10(2)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673090

RESUMEN

Global warming has two dangerous global consequences for agriculture: drought, due to water scarcity, and salinization, due to the prolonged use of water containing high concentrations of salts. Since the global climate is projected to continue to change over this century and beyond, choosing salt-tolerant plants could represent a potential paramount last resort for exploiting the secondary saline soils. Olive is considered moderately resistant to soil salinity as compared to other fruit trees, and in the present study, we investigated the influence of NaCl solutions (ranging from 0 to 200 mM) in a salt-tolerant (cv Canino) and two of its transgenic lines (Canino AT17-1 and Canino AT17-2), overexpressing tobacco osmotin gene, and in a salt-sensitive (Sirole) olive cultivar. After four weeks, most of the shoots of both Canino and Sirole plants showed stunted growth and ultimate leaf drop by exposure to salt-enriched media, contrary to transgenic lines, that did not show injuries and exhibited a normal growth rate. Malondialdehyde (MDA) content was also measured as an indicator of the lipid peroxidation level. To evaluate the role of the S assimilatory pathway in alleviating the adverse effects of salt stress, thiols levels as well as extractable activities of ATP sulfurylase (ATPS) and O-acetyl serine(thiol)lyase (OASTL), the first and the last enzyme of the S assimilation pathway, respectively, have been estimated. The results have clearly depicted that both transgenic lines overexpressing osmotin gene coped with increasing levels of NaCl by the induction of S metabolism, and particularly increase in OASTL activity closely paralleled changes of NaCl concentration. Linear correlation between salt stress and OASTL activity provides evidence that the S assimilation pathway plays a key role in adaptive response of olive plants under salt stress conditions.

3.
Plants (Basel) ; 9(9)2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32942703

RESUMEN

Interrogations of local germplasm and landraces can offer a foundation and genetic basis for drought tolerance in wheat. Potential of drought tolerance in a panel of 30 wheat genotypes including varieties, local landraces, and wild crosses were explored under drought stress (DS) and well-watered (WW) conditions. Considerable variation for an osmotic adjustment (OA) and yield components, coupled with genotype and environment interaction was observed, which indicates the differential potential of wheat genotypes under both conditions. Reduction in yield per plant (YP), thousand kernel weight (TKW), and induction of OA was detected. Correlation analysis revealed a strong positive association of YP with directly contributing yield components under both environments, indicating the impotence of these traits as a selection-criteria for the screening of drought-tolerant genotypes for drylands worldwide. Subsequently, the association of OA with TKW which contributes directly to YP, indicates that wheat attains OA to extract more water from the soil under low water-potential. Genotypes including WC-4, WC-8 and LLR-29 showed more TKW under both conditions, among them; LLR-29 also has maximum OA and batter yield comparatively. Result provides insight into the role of OA in plant yield sustainability under DS. In this study, we figure out the concept of OA and its incredible role in sustainable plant yield in wheat.

4.
Biomed Res Int ; 2013: 294759, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23484105

RESUMEN

Photosynthesis is essential for plant productivity and critical for plant growth. More than 90% of plants have a C3 metabolic pathway primarily for carbon assimilation. Improving crop yields for food and fuel is a major challenge for plant biology. To enhance the production of wheat there is need to adopt the strategies that can create the change in plants at the molecular level. During the study we have employed computational bioinformatics and interactomics analysis of C3 metabolic pathway proteins in wheat. The three-dimensional protein modeling provided insight into molecular mechanism and enhanced understanding of physiological processes and biological systems. Therefore in our study, initially we constructed models for nine proteins involving C3 metabolic pathway, as these are not determined through wet lab experiment (NMR, X-ray Crystallography) and not available in RCSB Protein Data Bank and UniProt KB. On the basis of docking interaction analysis, we proposed the schematic diagram of C3 metabolic pathway. Accordingly, there also exist vice versa interactions between 3PGK and Rbcl. Future site and directed mutagenesis experiments in C3 plants could be designed on the basis of our findings to confirm the predicted protein interactions.


Asunto(s)
Modelos Biológicos , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Bases de Datos de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA