Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776489

RESUMEN

Delays and risks associated with neurosurgical biopsies preclude timely diagnosis and treatment of central nervous system (CNS) lymphoma and other CNS neoplasms. We prospectively integrated targeted rapid genotyping of cerebrospinal fluid (CSF) into the evaluation of 70 patients with CNS lesions of unknown etiology. Participants underwent genotyping of CSF-derived DNA using a qPCR-based approach for parallel detection of single-nucleotide variants in the MYD88, TERT promoter, IDH1, IDH2, BRAF and H3F3A genes within 80 minutes of sample acquisition. Canonical mutations were detected in 42% of patients with neoplasms, including cases of primary and secondary CNS lymphoma, glioblastoma, IDH-mutant brainstem glioma and H3K27M-mutant diffuse midline glioma. Genotyping results eliminated the need for surgical biopsies in 7/33 (21.2%) cases of newly diagnosed neoplasms, resulting in significantly accelerated initiation of disease-directed treatment (median 3 vs 12 days; p = 0.027). This assay was then implemented in a Clinical Laboratory Improvement Amendments (CLIA) environment, with 2-day median turnaround for diagnosis of central nervous system lymphoma from 66 patients across 4 clinical sites. Our study prospectively demonstrates that targeted rapid CSF genotyping influences oncologic management for suspected CNS tumors.

2.
Blood ; 138(5): 382-386, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-33735913

RESUMEN

Diagnosing primary central nervous system lymphoma (PCNSL) frequently requires neurosurgical biopsy due to nonspecific radiologic features and the low yield of cerebrospinal fluid (CSF) studies. We characterized the clinical evaluation of suspected PCNSL (N = 1007 patients) and designed a rapid multiplexed genotyping assay for MYD88, TERT promoter, IDH1/2, H3F3A, and BRAF mutations to facilitate the diagnosis of PCNSL from CSF and detect other neoplasms in the differential diagnosis. Among 159 patients with confirmed PCNSL, the median time to secure a diagnosis of PCNSL was 10 days, with a range of 0 to 617 days. Permanent histopathology confirmed PCNSL in 142 of 152 biopsies (93.4%), whereas CSF analyses were diagnostic in only 15/113 samplings (13.3%). Among 86 archived clinical specimens, our targeted genotyping assay accurately detected hematologic malignancies with 57.6% sensitivity and 100% specificity (95% confidence interval [CI]: 44.1% to 70.4% and 87.2% to 100%, respectively). MYD88 and TERT promoter mutations were prospectively identified in DNA extracts of CSF obtained from patients with PCNSL and glioblastoma, respectively, within 80 minutes. Across 132 specimens, hallmark mutations indicating the presence of malignancy were detected with 65.8% sensitivity and 100% specificity (95% CI: 56.2%-74.5% and 83.9%-100%, respectively). This targeted genotyping approach offers a rapid, scalable adjunct to reduce diagnostic and treatment delays in PCNSL.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Técnicas de Genotipaje , Linfoma no Hodgkin , Mutación , Proteínas de Neoplasias , Reacción en Cadena en Tiempo Real de la Polimerasa , Adulto , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/genética , Femenino , Humanos , Linfoma no Hodgkin/líquido cefalorraquídeo , Linfoma no Hodgkin/diagnóstico , Linfoma no Hodgkin/genética , Proteínas de Neoplasias/líquido cefalorraquídeo , Proteínas de Neoplasias/genética
3.
Oncologist ; 26(3): 231-241, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33103803

RESUMEN

Brain metastases account for considerable morbidity and mortality in patients with cancer. Despite increasing prevalence, limited therapeutic options exist. Recent advances in our understanding of the molecular and cellular underpinnings of the tumor immune microenvironment and the immune evasive mechanisms employed by tumor cells have shed light on how immunotherapies may provide therapeutic benefit to patients. The development and evolution of immunotherapy continue to show promise for the treatment of brain metastases. Positive outcomes have been observed in several studies evaluating the efficacy and safety of these treatments. However, many challenges persist in the application of immunotherapies to brain metastases. This review discusses the potential benefits and challenges in the development and use of checkpoint inhibitors, chimeric antigen receptor T-cell therapy, and oncolytic viruses for the treatment of brain metastases. Future studies are necessary to further evaluate and assess the potential use of each of these therapies in this setting. As we gain more knowledge regarding the role immunotherapies may play in the treatment of brain metastases, it is important to consider how these treatments may guide clinical decision making for clinicians and the impact they may have on patients. IMPLICATIONS FOR PRACTICE: Immunotherapies have produced clinically significant outcomes in early clinical trials evaluating patients with brain metastases or demonstrated promising results in preclinical models. Checkpoint inhibitors have been the most common immunotherapy studied to date in the setting of brain metastases, but novel approaches that can harness the immune system to contain and eliminate cancer cells are currently under investigation and may soon become more common in the clinical setting. An understanding of these evolving therapies may be useful in determining how the future management and treatment of brain metastases among patients with cancer will continue to advance.


Asunto(s)
Neoplasias Encefálicas , Inmunoterapia , Neoplasias Encefálicas/terapia , Humanos , Microambiente Tumoral
4.
Oncologist ; 24(5): 671-679, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30796152

RESUMEN

BACKGROUND: Immune checkpoint blockade has systemic efficacy in patients with metastatic melanoma, including those with brain metastases (MBMs). However, immunotherapy-induced intracranial tumoral inflammation can lead to neurologic compromise, requiring steroids, which abrogate the systemic efficacy of this approach. We investigated whether upfront neurosurgical resection of MBM is associated with a therapeutic advantage when performed prior to initiation of immunotherapy. MATERIAL AND METHODS: An institutional review board-approved, retrospective study identified 142 patients with MBM treated with immune checkpoint blockade between 2010 and 2016 at Massachusetts General Hospital, of whom 79 received surgery. Patients were classified based on the temporal relationship between immunotherapy, surgery, and development of central nervous system metastases. Overall survival (OS) was calculated from the date of diagnosis of MBM until death from any cause. Multivariate model building included a prognostic Cox model of OS, the effect of immunotherapy and surgical sequencing on OS, and the effect of immunotherapy and radiation sequencing on OS. RESULTS: The 2-year overall survival for patients treated with cytotoxic T-lymphocyte antigen 4, programmed death 1, or combinatorial blockade was 19%, 54%, and 57%, respectively. Among immunotherapy-naïve melanoma brain metastases, surgery followed by immunotherapy had a median survival of 22.7 months (95% confidence interval [CI], 12.6-39.2) compared with 10.8 months for patients treated with immunotherapy alone (95% CI, 7.8-16.3) and 9.4 months for patients treated with immunotherapy followed by surgery (95% CI, 4.1 to ∞; p = .12). On multivariate analysis, immunotherapy-naïve brain metastases treated with immunotherapy alone were associated with increased risk of death (hazard ratio, 1.72; 95% CI, 1.00-2.99) compared with immunotherapy-naïve brain metastases treated with surgery followed by immunotherapy. CONCLUSION: In treatment-naïve patients, early surgical resection for local control should be considered prior to commencing immunotherapy. A prospective, randomized trial comparing the sequence of surgery and immunotherapy for treatment-naïve melanoma brain metastases is warranted. IMPLICATIONS FOR PRACTICE: In this retrospective study of 142 patients with melanoma brain metastases treated with immune checkpoint blockade, the development of melanoma brain metastases following immunotherapy was associated with decreased survival compared with diagnosis of immunotherapy-naïve brain metastases. The benefit of surgical intervention was seen in immunotherapy-naïve brain metastases in contrast to brain metastases that developed on immunotherapy. These results suggest that upfront local control with surgery for immunotherapy-naïve melanoma brain metastasis may provide a bridge toward immunotherapy-mediated systemic control.


Asunto(s)
Antineoplásicos Inmunológicos/efectos adversos , Neoplasias Encefálicas/terapia , Encéfalo/efectos de los fármacos , Melanoma/terapia , Radiocirugia/métodos , Neoplasias Cutáneas/patología , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Encéfalo/inmunología , Encéfalo/patología , Encéfalo/cirugía , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/secundario , Antígeno CTLA-4/inmunología , Quimioterapia Adyuvante/métodos , Femenino , Estudios de Seguimiento , Humanos , Estimación de Kaplan-Meier , Masculino , Melanoma/inmunología , Melanoma/mortalidad , Melanoma/secundario , Persona de Mediana Edad , Terapia Neoadyuvante/efectos adversos , Pronóstico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Estudios Prospectivos , Estudios Retrospectivos , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/mortalidad , Neoplasias Cutáneas/terapia , Resultado del Tratamiento , Adulto Joven
5.
Acta Neuropathol ; 136(5): 779-792, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30123936

RESUMEN

Progressive meningiomas that have failed surgery and radiation have a poor prognosis and no standard therapy. While meningiomas are more common in females overall, progressive meningiomas are enriched in males. We performed a comprehensive molecular characterization of 169 meningiomas from 53 patients with progressive/high-grade tumors, including matched primary and recurrent samples. Exome sequencing in an initial cohort (n = 24) detected frequent alterations in genes residing on the X chromosome, with somatic intragenic deletions of the dystrophin-encoding and muscular dystrophy-associated DMD gene as the most common alteration (n = 5, 20.8%), along with alterations of other known X-linked cancer-related genes KDM6A (n =2, 8.3%), DDX3X, RBM10 and STAG2 (n = 1, 4.1% each). DMD inactivation (by genomic deletion or loss of protein expression) was ultimately detected in 17/53 progressive meningioma patients (32%). Importantly, patients with tumors harboring DMD inactivation had a shorter overall survival (OS) than their wild-type counterparts [5.1 years (95% CI 1.3-9.0) vs. median not reached (95% CI 2.9-not reached, p = 0.006)]. Given the known poor prognostic association of TERT alterations in these tumors, we also assessed for these events, and found seven patients with TERT promoter mutations and three with TERT rearrangements in this cohort (n = 10, 18.8%), including a recurrent novel RETREG1-TERT rearrangement that was present in two patients. In a multivariate model, DMD inactivation (p = 0.033, HR = 2.6, 95% CI 1.0-6.6) and TERT alterations (p = 0.005, HR = 3.8, 95% CI 1.5-9.9) were mutually independent in predicting unfavorable outcomes. Thus, DMD alterations identify a subset of progressive/high-grade meningiomas with worse outcomes.


Asunto(s)
Distrofina/genética , Eliminación de Gen , Neoplasias Meníngeas/genética , Meningioma/genética , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral/patología , Línea Celular Tumoral/ultraestructura , Estudios de Cohortes , Progresión de la Enfermedad , Distrofina/metabolismo , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/patología , Meningioma/diagnóstico por imagen , Meningioma/patología , Microscopía Electrónica de Transmisión , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa Multiplex , ARN Mensajero/metabolismo , Cromatina Sexual/genética , Telomerasa/genética , Telomerasa/metabolismo , Secuenciación del Exoma
6.
BMC Neurosci ; 17: 5, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26810757

RESUMEN

BACKGROUND: A major area of unmet need is the development of strategies to restore neuronal network systems and to recover brain function in patients with neurological disease. The use of cell-based therapies remains an attractive approach, but its application has been challenging due to the lack of suitable cell sources, ethical concerns, and immune-mediated tissue rejection. We propose an innovative approach that utilizes gut-derived neural tissue for cell-based therapies following focal or diffuse central nervous system injury. RESULTS: Enteric neuronal stem and progenitor cells, able to differentiate into neuronal and glial lineages, were isolated from the postnatal enteric nervous system and propagated in vitro. Gut-derived neural progenitors, genetically engineered to express fluorescent proteins, were transplanted into the injured brain of adult mice. Using different models of brain injury in combination with either local or systemic cell delivery, we show that transplanted enteric neuronal progenitor cells survive, proliferate, and differentiate into neuronal and glial lineages in vivo. Moreover, transplanted cells migrate extensively along neuronal pathways and appear to modulate the local microenvironment to stimulate endogenous neurogenesis. CONCLUSIONS: Our findings suggest that enteric nervous system derived cells represent a potential source for tissue regeneration in the central nervous system. Further studies are needed to validate these findings and to explore whether autologous gut-derived cell transplantation into the injured brain can result in functional neurologic recovery.


Asunto(s)
Encéfalo/fisiopatología , Trasplante de Células/métodos , Sistema Nervioso Entérico/fisiología , Células-Madre Neurales/fisiología , Trasplante de Células Madre/métodos , Animales , Encéfalo/efectos de la radiación , Encéfalo/cirugía , Lesiones Encefálicas/cirugía , Lesiones Encefálicas/terapia , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Sistema Nervioso Entérico/citología , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/trasplante , Neurogénesis , Traumatismos Experimentales por Radiación/cirugía , Traumatismos Experimentales por Radiación/terapia
7.
Clin Cancer Res ; 30(2): 420-435, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37611074

RESUMEN

PURPOSE: Brain metastases are associated with high morbidity and are often resistant to immune checkpoint inhibitors. We evaluated whether CDK4/6 inhibitor (CDKi) abemaciclib can sensitize intracranial tumors to programmed cell death protein 1 (PD-1) inhibition in mouse models of melanoma and breast cancer brain metastasis. EXPERIMENTAL DESIGN: Treatment response was evaluated in vivo using immunocompetent mouse models of brain metastasis bearing concurrent intracranial and extracranial tumors. Treatment effect on intracranial and extracranial tumor-immune microenvironments (TIME) was evaluated using immunofluorescence, multiplex immunoassays, high-parameter flow cytometry, and T-cell receptor profiling. Mice with humanized immune systems were evaluated using flow cytometry to study the effect of CDKi on human T-cell development. RESULTS: We found that combining abemaciclib with PD-1 inhibition reduced tumor burden and improved overall survival in mice. The TIME, which differed on the basis of anatomic location of tumors, was altered with CDKi and PD-1 inhibition in an organ-specific manner. Combination abemaciclib and anti-PD-1 treatment increased recruitment and expansion of CD8+ effector T-cell subsets, depleted CD4+ regulatory T (Treg) cells, and reduced levels of immunosuppressive cytokines in intracranial tumors. In immunodeficient mice engrafted with human immune systems, abemaciclib treatment supported development and maintenance of CD8+ T cells and depleted Treg cells. CONCLUSIONS: Our results highlight the distinct properties of intracranial and extracranial tumors and support clinical investigation of combination CDK4/6 and PD-1 inhibition in patients with brain metastases. See related commentary by Margolin, p. 257.


Asunto(s)
Neoplasias Encefálicas , Receptor de Muerte Celular Programada 1 , Humanos , Ratones , Animales , Neoplasias Encefálicas/patología , Aminopiridinas/farmacología , Aminopiridinas/uso terapéutico , Bencimidazoles/farmacología , Bencimidazoles/uso terapéutico , Linfocitos T CD8-positivos , Microambiente Tumoral , Quinasa 4 Dependiente de la Ciclina/metabolismo
8.
Neuro Oncol ; 26(5): 889-901, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38134951

RESUMEN

BACKGROUND: Immune checkpoint inhibitors (ICI) have revolutionized cancer treatment; however, only a subset of patients with brain metastasis (BM) respond to ICI. Activating mutations in the mitogen-activated protein kinase signaling pathway are frequent in BM. The objective of this study was to evaluate whether therapeutic inhibition of extracellular signal-regulated kinase (ERK) can improve the efficacy of ICI for BM. METHODS: We used immunotypical mouse models of BM bearing dual extracranial/intracranial tumors to evaluate the efficacy of single-agent and dual-agent treatment with selective ERK inhibitor LY3214996 (LY321) and anti-programmed death receptor 1 (PD-1) antibody. We verified target inhibition and drug delivery, then investigated treatment effects on T-cell response and tumor-immune microenvironment using high-parameter flow cytometry, multiplex immunoassays, and T-cell receptor profiling. RESULTS: We found that dual treatment with LY321 and anti-PD-1 significantly improved overall survival in 2 BRAFV600E-mutant murine melanoma models but not in KRAS-mutant murine lung adenocarcinoma. We demonstrate that although LY321 has limited blood-brain barrier (BBB) permeability, combined LY321 and anti-PD-1 therapy increases tumor-infiltrating CD8+ effector T cells, broadens the T-cell receptor repertoire in the extracranial tumor, enriches T-cell clones shared by the periphery and brain, and reduces immunosuppressive cytokines and cell populations in tumors. CONCLUSIONS: Despite the limited BBB permeability of LY321, combined LY321 and anti-PD-1 treatment can improve intracranial disease control by amplifying extracranial immune responses, highlighting the role of extracranial tumors in driving intracranial response to treatment. Combined ERK and PD-1 inhibition is a promising therapeutic approach, worthy of further investigation for patients with melanoma BM.


Asunto(s)
Neoplasias Encefálicas , Inhibidores de Puntos de Control Inmunológico , Melanoma , Receptor de Muerte Celular Programada 1 , Proteínas Proto-Oncogénicas B-raf , Animales , Ratones , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/patología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/patología , Melanoma/inmunología , Melanoma/genética , Humanos , Inmunoterapia/métodos , Femenino , Modelos Animales de Enfermedad , Microambiente Tumoral/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Ratones Endogámicos C57BL , Mutación
9.
Neurology ; 101(17): e1741-e1746, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37527941

RESUMEN

OBJECTIVES: The folate antagonist high-dose methotrexate (HD-MTX) is integral to induction chemotherapy for primary CNS lymphoma (PCNSL); however, it can be associated with leukoencephalopathy. Methylenetetrahydrofolate reductase (MTHFR) is involved in intracellular folate depletion. We assessed whether MTHFR polymorphisms affect the risk of leukoencephalopathy. METHODS: We retrospectively searched our database at the Massachusetts General Hospital for newly diagnosed PCNSL treated with HD-MTX (without radiotherapy nor intrathecal chemotherapy). RESULTS: Among 68 patients with PCNSL, MTHFR polymorphisms were found in 60 individuals (88.2%) including a 677C→T genotype, a 1298A→C genotype, or a combined 677C→T/1298A→C genotype. Neither MTX clearance nor response to induction therapy was affected by specific genotypes, and complete response was achieved in 72.1% of patients by HD-MTX-based induction. However, the 1298A→C genotype was associated with increased frequency and severity of leukoencephalopathy over time (odds ratio 4.0, CI 1.5-11.4). Such genotype predicted treatment-induced leukoencephalopathy with a sensitivity of 71.0% and a specificity of 62.2% (area under the curve 0.67, CI 0.5-0.8; p = 0.019). While progression-free survival did not differ in genotype-based subgroups, overall survival was lower for the 1298A→C genotype. DISCUSSION: The MTHFR 1298A→C genotype may serve to identify patients with PCNSL at elevated risk of HD-MTX-induced leukoencephalopathy. This seems to translate into reduced survival, potentially due to decreased functional status.


Asunto(s)
Linfoma , Metotrexato , Humanos , Metotrexato/efectos adversos , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Estudios Retrospectivos , Ácido Fólico , Genotipo , Linfoma/tratamiento farmacológico , Linfoma/genética
10.
Clin Cancer Res ; 28(15): 3318-3328, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35404402

RESUMEN

PURPOSE: Patients with KRAS-mutant non-small cell lung cancer (NSCLC) with brain metastases (BM) have a poor prognosis. Adagrasib (MRTX849), a potent oral small-molecule KRASG12C inhibitor, irreversibly and selectively binds KRASG12C, locking it in its inactive state. Adagrasib has been optimized for favorable pharmacokinetic properties, including long half-life (∼24 hours), extensive tissue distribution, dose-dependent pharmacokinetics, and central nervous system penetration; however, BM-specific antitumor activity of KRASG12C inhibitors remains to be fully characterized. EXPERIMENTAL DESIGN: A retrospective database query identified patients with KRAS-mutant NSCLC to understand their propensity to develop BM. Preclinical studies assessed physiochemical and pharmacokinetic properties of adagrasib. Mice bearing intracranial KRASG12C-mutant NSCLC xenografts (LU99-Luc/H23-Luc/LU65-Luc) were treated with clinically relevant adagrasib doses, and levels of adagrasib in plasma, cerebrospinal fluid (CSF), and brain were determined along with antitumor activity. Preliminary clinical data were collected from 2 patients with NSCLC with untreated BM who had received adagrasib 600 mg twice daily in the phase Ib cohort of the KRYSTAL-1 trial; CSF was collected, adagrasib concentrations measured, and antitumor activity in BM evaluated. RESULTS: Patients with KRAS-mutant NSCLC demonstrated high propensity to develop BM (≥40%). Adagrasib penetrated into CSF and demonstrated tumor regression and extended survival in multiple preclinical BM models. In 2 patients with NSCLC and untreated BM, CSF concentrations of adagrasib measured above the target cellular IC50. Both patients demonstrated corresponding BM regression, supporting potential clinical activity of adagrasib in the brain. CONCLUSIONS: These data support further development of adagrasib in patients with KRASG12C-mutant NSCLC with untreated BM. See related commentary by Kommalapati and Mansfield, p. 3179.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Acetonitrilos , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Piperazinas , Proteínas Proto-Oncogénicas p21(ras)/genética , Pirimidinas , Estudios Retrospectivos
11.
Nat Commun ; 13(1): 1325, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35289329

RESUMEN

High-grade meningiomas are associated with neuro-cognitive morbidity and have limited treatments. High-grade meningiomas harbor an immunosuppressive tumor microenvironment (TME) and programmed death-ligand 1 (PD-L1) expression may contribute to their aggressive phenotype. Here, we present the results of a single-arm, open-label phase 2 trial (NCT03279692) evaluating the efficacy of pembrolizumab, a PD-1 inhibitor, in a cohort of 25 evaluable patients with recurrent and progressive grade 2 and 3 meningiomas. The primary endpoint is the proportion of patients alive and progression-free at 6 months (PFS-6). Secondary endpoints include progression-free and overall survival, best intracranial response, and toxicity. Our study has met its primary endpoint and achieved a PFS-6 rate of 0.48 (90% exact CI: 0.31-0.66) and a median PFS of 7.6 months (90% CI: 3.4-12.9 months). Twenty percent of patients have experienced one (or more) grade-3 or higher treatment-related adverse events. These results suggest that pembrolizumab exerts promising efficacy on a subset of these tumors. Further studies are needed to identify the biological facets within the meningioma TME that may drive response to immune-based therapies.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Anticuerpos Monoclonales Humanizados/efectos adversos , Progresión de la Enfermedad , Humanos , Neoplasias Meníngeas/tratamiento farmacológico , Meningioma/tratamiento farmacológico , Microambiente Tumoral
12.
Cancer Immunol Res ; 10(8): 996-1012, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35706413

RESUMEN

Melanoma-derived brain metastases (MBM) represent an unmet clinical need because central nervous system progression is frequently an end stage of the disease. Immune checkpoint inhibitors (ICI) provide a clinical opportunity against MBM; however, the MBM tumor microenvironment (TME) has not been fully elucidated in the context of ICI. To dissect unique elements of the MBM TME and correlates of MBM response to ICI, we collected 32 fresh MBM and performed single-cell RNA sequencing of the MBM TME and T-cell receptor clonotyping on T cells from MBM and matched blood and extracranial lesions. We observed myeloid phenotypic heterogeneity in the MBM TME, most notably multiple distinct neutrophil states, including an IL8-expressing population that correlated with malignant cell epithelial-to-mesenchymal transition. In addition, we observed significant relationships between intracranial T-cell phenotypes and the distribution of T-cell clonotypes intracranially and peripherally. We found that the phenotype, clonotype, and overall number of MBM-infiltrating T cells were associated with response to ICI, suggesting that ICI-responsive MBMs interact with peripheral blood in a manner similar to extracranial lesions. These data identify unique features of the MBM TME that may represent potential targets to improve clinical outcomes for patients with MBM.


Asunto(s)
Neoplasias Encefálicas , Melanoma , Humanos , Inhibidores de Puntos de Control Inmunológico , Microambiente Tumoral
13.
Neurol Med Chir (Tokyo) ; 61(6): 385-391, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33967180

RESUMEN

Adamantinomatous craniopharyngiomas (ACP) are characterized by alterations in the CTNNB1 gene while almost all papillary craniopharyngiomas (PCP) harbor a canonical V600E mutation in the BRAF gene. Although other recurrent driver genes have not been described to date in craniopharyngiomas, the heterogeneous clinical course of these tumors might be associated with the acquisition of further genomic alterations. It is well known that telomerase reverse transcriptase (TERT) promoter (TERTp) alterations, including mutations or methylation, upregulate the expression of TERT and increase telomerase activity, promoting tumorigenesis. We investigated whether TERTp mutations or methylation are associated with tumor relapse in a subset of craniopharyngiomas. Samples from 42 patients with histologically confirmed craniopharyngioma were retrieved. We determined TERTp, BRAF, and CTNNB1 hotspot mutations in all samples using targeted sequencing and the TERTp methylation status by methylation-specific polymerase chain reaction (PCR) in 30 samples. While BRAF V600E mutations and CTNNB1 mutations were detected in 12 (28.6%) and 21 patients (50%) in the initial tumors and subsequent recurrences, respectively, none of the patients in our cohort, including those with multiple relapses, harbored a TERTp mutation. Furthermore, TERTp methylation was detected in 14 out of 24 cases (58.3%) with available primary samples; however, no correlation between TERTp methylation with the pathological subtype, genotype, or tumor aggressiveness was detected. These data suggest that elevated telomerase activity via acquisition of TERTp mutations is an infrequent pathway in the tumorigenesis of craniopharyngiomas, regardless of their clinical course.


Asunto(s)
Craneofaringioma , Neoplasias Hipofisarias , Telomerasa , Craneofaringioma/genética , Humanos , Mutación , Recurrencia Local de Neoplasia/genética , Neoplasias Hipofisarias/genética , Regiones Promotoras Genéticas/genética , Telomerasa/genética
14.
Nat Commun ; 12(1): 5955, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34642316

RESUMEN

Leptomeningeal disease (LMD) is a devastating complication of solid tumor malignancies, with dire prognosis and no effective systemic treatment options. Over the past decade, the incidence of LMD has steadily increased due to therapeutics that have extended the survival of cancer patients, highlighting the need for new interventions. To examine the efficacy of immune checkpoint inhibitors (ICI) in patients with LMD, we completed two phase II clinical trials. Here, we investigate the cellular and molecular features underpinning observed patient trajectories in these trials by applying single-cell RNA and cell-free DNA profiling to longitudinal cerebrospinal fluid (CSF) draws from enrolled patients. We recover immune and malignant cell types in the CSF, characterize cell behavior changes following ICI, and identify genomic features associated with relevant clinical phenomena. Overall, our study describes the liquid LMD tumor microenvironment prior to and following ICI treatment and demonstrates clinical utility of cell-free and single-cell genomic measurements for LMD research.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Antígeno CTLA-4/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Carcinomatosis Meníngea/tratamiento farmacológico , Neoplasias Meníngeas/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/inmunología , Microambiente Tumoral/efectos de los fármacos , Adulto , Anciano , Anticuerpos Monoclonales Humanizados/uso terapéutico , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/secundario , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/genética , Ácidos Nucleicos Libres de Células/genética , Ácidos Nucleicos Libres de Células/inmunología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoterapia , Interferón gamma/genética , Interferón gamma/inmunología , Ipilimumab/uso terapéutico , Masculino , Carcinomatosis Meníngea/inmunología , Carcinomatosis Meníngea/mortalidad , Carcinomatosis Meníngea/patología , Neoplasias Meníngeas/inmunología , Neoplasias Meníngeas/mortalidad , Neoplasias Meníngeas/patología , Persona de Mediana Edad , Nivolumab/uso terapéutico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/genética , Análisis de la Célula Individual , Análisis de Supervivencia , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
15.
Nat Commun ; 12(1): 5954, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34642329

RESUMEN

Leptomeningeal disease (LMD) is a common complication from solid tumor malignancies with a poor prognosis and limited treatment options. We present a single arm Phase II study of 18 patients with LMD receiving combined ipilimumab and nivolumab until progression or unacceptable toxicity (NCT02939300). The primary end point is overall survival at 3 months (OS3). Secondary end points include toxicity, cumulative time-to-progression at 3 months, and progression-free survival. A Simon two-stage design is used to compare a null hypothesis OS3 of 18% against an alternative of 44%. Median follow up based on patients still alive is 8.0 months (range: 0.5 to 15.9 months). The study has met its primary endpoint as 8 of 18 (OS3 0.44; 90% CI: 0.24 to 0.66) patients are alive at three months. One third of patients have experienced one (or more) grade-3 or higher adverse events. Two patients have discontinued protocol treatment due to unacceptable toxicity (hepatitis and colitis, respectively). The most frequent adverse events include fatigue (N = 7), nausea (N = 6), fever (N = 6), anorexia (N = 6) and rash (N = 6). Combined ipilimumab and nivolumab has an acceptable safety profile and demonstrates promising activity in LMD patients. Larger, multicenter clinical trials are needed to validate these results.


Asunto(s)
Antineoplásicos Inmunológicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Encefálicas/tratamiento farmacológico , Ipilimumab/administración & dosificación , Carcinomatosis Meníngea/tratamiento farmacológico , Neoplasias Meníngeas/tratamiento farmacológico , Nivolumab/administración & dosificación , Adulto , Anciano , Anorexia/inducido químicamente , Anorexia/mortalidad , Anorexia/patología , Antineoplásicos Inmunológicos/efectos adversos , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/secundario , Colitis/inducido químicamente , Colitis/mortalidad , Colitis/patología , Exantema/inducido químicamente , Exantema/mortalidad , Exantema/patología , Fatiga/inducido químicamente , Fatiga/mortalidad , Fatiga/patología , Femenino , Fiebre/inducido químicamente , Fiebre/mortalidad , Fiebre/patología , Hepatitis/etiología , Hepatitis/mortalidad , Hepatitis/patología , Humanos , Ipilimumab/efectos adversos , Masculino , Carcinomatosis Meníngea/mortalidad , Carcinomatosis Meníngea/patología , Neoplasias Meníngeas/mortalidad , Neoplasias Meníngeas/patología , Persona de Mediana Edad , Náusea/inducido químicamente , Náusea/mortalidad , Náusea/patología , Nivolumab/efectos adversos , Análisis de Supervivencia
16.
JAMA Netw Open ; 4(8): e2120040, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34369989

RESUMEN

Importance: Leptomeningeal disease (LMD) is a devastating complication of cancer that is frequently underdiagnosed owing to the low sensitivity of cerebrospinal fluid (CSF) cytologic assessment, the current benchmark diagnostic method. Improving diagnostic sensitivity may lead to improved treatment decisions. Objective: To assess whether cell-free DNA (cfDNA) analysis of CSF may be used to diagnose LMD more accurately than cytologic analysis. Design, Setting, and Participants: This diagnostic study conducted in a neuro-oncology clinic at 2 large, tertiary medical centers assessed the use of genomic sequencing of CSF samples obtained from 30 patients with suspected or confirmed LMD from 2015 through 2018 to identify tumor-derived cfDNA. From the same CSF samples, cytologic analyses were conducted, and the results of the 2 tests were compared. This study consisted of 2 patient populations: 22 patients with cytologically confirmed LMD without parenchymal tumors abutting their CSF and 8 patients with parenchymal brain metastases with no evidence of LMD. Patients were considered positive for the presence of LMD if previous CSF cytologic analysis was positive for malignant cells. The analysis was conducted from 2015 to 2018. Main Outcomes and Measures: The primary outcome was the diagnostic accuracy of cfDNA analysis, defined as the number of tests that resulted in correct diagnoses out of the total number of tests assayed. Hypotheses were formed before data collection. Results: In total, 30 patients (23 women [77%]; median age, 51 years [range, 28-81 years]), primarily presenting with metastatic solid malignant neoplasms, participated in this study. For 48 follow-up samples from patients previously diagnosed via cytologic analysis as having LMD with no parenchymal tumor abutting CSF, cfDNA findings were accurate in the assessment of LMD in 45 samples (94%; 95% CI, 83%-99%), whereas cytologic analysis was accurate in 36 samples (75%; 95% CI, 60%-86%), a significant difference (P = .02). Of 43 LMD-positive samples, CSF cfDNA analysis was sensitive to LMD in 40 samples (93%; 95% CI, 81%-99%), and cytologic analysis was sensitive to LMD in 31 samples (72%; 95% CI, 56%-85%), a significant difference (P = .02). For 3 patients with parenchymal brain metastases abutting the CSF and no suspicion of LMD, cytologic findings were negative for LMD in all 3 patients, whereas cfDNA findings were positive in all 3 patients. Conclusions and Relevance: This diagnostic study found improved sensitivity and accuracy of cfDNA CSF testing vs cytologic assessment for diagnosing LMD with the exception of parenchymal tumors abutting CSF, suggesting improved ability to diagnosis LMD. Consideration of incorporating CSF cfDNA analysis into clinical care is warranted.


Asunto(s)
ADN Tumoral Circulante/líquido cefalorraquídeo , Pruebas Diagnósticas de Rutina , Neoplasias Meníngeas/líquido cefalorraquídeo , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/genética , Neoplasias/complicaciones , Neoplasias/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Primarias Secundarias/líquido cefalorraquídeo , Neoplasias Primarias Secundarias/diagnóstico , Neoplasias Primarias Secundarias/genética , Valor Predictivo de las Pruebas
17.
Nat Med ; 26(8): 1280-1284, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32483359

RESUMEN

An increasing fraction of patients with metastatic cancer develop leptomeningeal dissemination of disease (LMD), and survival is dismal1-3. We conducted a single-arm, phase 2 study of pembrolizumab in patients with solid tumor malignancies and LMD (NCT02886585). Patients received 200 mg of pembrolizumab intravenously every 3 weeks until definitive progression or unacceptable toxicity. The primary endpoint was rate of overall survival at 3 months (OS3). Secondary objectives included toxicity, response rate and time to intracranial or extracranial disease progression. A Simon two-stage design was used to compare a null hypothesis OS3 of 18% against an alternative of 43%. Twenty patients-17 with breast cancer, two with lung cancer and one with ovarian cancer-were enrolled into the pre-specified evaluation group having received at least one dose of pembrolizumab. The median follow-up of surviving patients was 6.3 months (range, 2.2-12.5 months). The percentage of patients who experienced one (or more) grade 3 or higher adverse events at least possibly related to treatment was 40%, the most frequent being hyperglycemia (n = 6), nausea (n = 7) and vomiting (n = 7). The study met the primary endpoint, as 12 of 20 (OS3, 0.60; 90% confidence interval, 0.39-0.78) patients were alive at 3 months after enrollment. Pembrolizumab is safe and feasible and displays promising activity in patients with LMD. Further investigations are needed to identify which patients with LMD can benefit from pembrolizumab.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Carcinomatosis Meníngea/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados/efectos adversos , Neoplasias de la Mama/patología , Supervivencia sin Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Hiperglucemia/inducido químicamente , Hiperglucemia/patología , Neoplasias Pulmonares/patología , Carcinomatosis Meníngea/patología , Náusea/inducido químicamente , Náusea/patología , Metástasis de la Neoplasia , Neoplasias Ováricas/patología , Vómitos/inducido químicamente , Vómitos/patología
19.
Nat Genet ; 52(4): 371-377, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32203465

RESUMEN

Brain metastases from lung adenocarcinoma (BM-LUAD) frequently cause patient mortality. To identify genomic alterations that promote brain metastases, we performed whole-exome sequencing of 73 BM-LUAD cases. Using case-control analyses, we discovered candidate drivers of brain metastasis by identifying genes with more frequent copy-number aberrations in BM-LUAD compared to 503 primary LUADs. We identified three regions with significantly higher amplification frequencies in BM-LUAD, including MYC (12 versus 6%), YAP1 (7 versus 0.8%) and MMP13 (10 versus 0.6%), and significantly more frequent deletions in CDKN2A/B (27 versus 13%). We confirmed that the amplification frequencies of MYC, YAP1 and MMP13 were elevated in an independent cohort of 105 patients with BM-LUAD. Functional assessment in patient-derived xenograft mouse models validated the notion that MYC, YAP1 or MMP13 overexpression increased the incidence of brain metastasis. These results demonstrate that somatic alterations contribute to brain metastases and that genomic sequencing of a sufficient number of metastatic tumors can reveal previously unknown metastatic drivers.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Neoplasias Encefálicas/genética , Neoplasias Pulmonares/genética , Metástasis de la Neoplasia/genética , Adenocarcinoma del Pulmón/patología , Animales , Neoplasias Encefálicas/patología , Estudios de Casos y Controles , Línea Celular , Variaciones en el Número de Copia de ADN/genética , Femenino , Genes myc/genética , Genómica/métodos , Células HEK293 , Humanos , Neoplasias Pulmonares/patología , Masculino , Metaloproteinasa 13 de la Matriz/genética , Ratones , Ratones Desnudos , Mutación/genética , Metástasis de la Neoplasia/patología , Factores de Transcripción/genética , Secuenciación del Exoma
20.
J Immunother Cancer ; 7(1): 265, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31627744

RESUMEN

The interplay between the immune system and tumor progression is well recognized. However, current human breast cancer immunophenotyping studies are mostly focused on primary tumors with metastatic breast cancer lesions remaining largely understudied. To address this gap, we examined exome-capture RNA sequencing data from 50 primary breast tumors (PBTs) and their patient-matched metastatic tumors (METs) in brain, ovary, bone and gastrointestinal tract. We used gene expression signatures as surrogates for tumor infiltrating lymphocytes (TILs) and compared TIL patterns in PBTs and METs. Enrichment analysis and deconvolution methods both revealed that METs had a significantly lower abundance of total immune cells, including CD8+ T cells, regulatory T cells and dendritic cells. An exception was M2-like macrophages, which were significantly higher in METs across the organ sites examined. Multiplex immunohistochemistry results were consistent with data from the in-silico analysis and showed increased macrophages in METs. We confirmed the finding of a significant reduction in immune cells in brain METs (BRMs) by pathologic assessment of TILs in a set of 49 patient-matched pairs of PBT/BRMs. These findings indicate that METs have an overall lower infiltration of immune cells relative to their matched PBTs, possibly due to immune escape. RNAseq analysis suggests that the relative levels of M2-like macrophages are increased in METs, and their potential role in promoting breast cancer metastasis warrants further study.


Asunto(s)
Neoplasias Óseas/inmunología , Neoplasias Encefálicas/inmunología , Neoplasias de la Mama/inmunología , Neoplasias Gastrointestinales/inmunología , Neoplasias Ováricas/inmunología , Adulto , Biomarcadores de Tumor , Neoplasias Óseas/secundario , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Linfocitos T CD8-positivos/inmunología , Conjuntos de Datos como Asunto , Células Dendríticas/inmunología , Femenino , Neoplasias Gastrointestinales/secundario , Humanos , Inmunohistoquímica , Inmunofenotipificación , Linfocitos Infiltrantes de Tumor/inmunología , Macrófagos/inmunología , Persona de Mediana Edad , Neoplasias Ováricas/secundario , RNA-Seq , Linfocitos T Reguladores/inmunología , Escape del Tumor , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA