Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Transl Med ; 20(1): 522, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371290

RESUMEN

BACKGROUND: Cardiac mesenchymal stromal cells (C-MSC) were recently shown to differentiate into adipocytes and myofibroblasts to promote the aberrant remodeling of cardiac tissue that characterizes arrhythmogenic cardiomyopathy (ACM). A calcium (Ca2+) signaling dysfunction, mainly demonstrated in mouse models, is recognized as a mechanism impacting arrhythmic risk in ACM cardiomyocytes. Whether similar mechanisms influence ACM C-MSC fate is still unknown. Thus, we aim to ascertain whether intracellular Ca2+ oscillations and the Ca2+ toolkit are altered in human C-MSC obtained from ACM patients, and to assess their link with C-MSC-specific ACM phenotypes. METHODS AND RESULTS: ACM C-MSC show enhanced spontaneous Ca2+ oscillations and concomitant increased Ca2+/Calmodulin dependent kinase II (CaMKII) activation compared to control cells. This is manly linked to a constitutive activation of Store-Operated Ca2+ Entry (SOCE), which leads to enhanced Ca2+ release from the endoplasmic reticulum through inositol-1,4,5-trisphosphate receptors. By targeting the Ca2+ handling machinery or CaMKII activity, we demonstrated a causative link between Ca2+ oscillations and fibro-adipogenic differentiation of ACM C-MSC. Genetic silencing of the desmosomal gene PKP2 mimics the remodelling of the Ca2+ signalling machinery occurring in ACM C-MSC. The anti-arrhythmic drug flecainide inhibits intracellular Ca2+ oscillations and fibro-adipogenic differentiation by selectively targeting SOCE. CONCLUSIONS: Altogether, our results extend the knowledge of Ca2+ dysregulation in ACM to the stromal compartment, as an etiologic mechanism of C-MSC-related ACM phenotypes. A new mode of action of flecainide on a novel mechanistic target is unveiled against the fibro-adipose accumulation in ACM.


Asunto(s)
Cardiomiopatías , Células Madre Mesenquimatosas , Ratones , Animales , Humanos , Flecainida , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Miocitos Cardíacos , Calcio , Cardiomiopatías/genética
2.
J Cell Mol Med ; 25(16): 8074-8086, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34288391

RESUMEN

Second trimester foetal human amniotic fluid-derived stem cells (hAFS) have been shown to possess remarkable cardioprotective paracrine potential in different preclinical models of myocardial injury and drug-induced cardiotoxicity. The hAFS secretome, namely the total soluble factors released by cells in their conditioned medium (hAFS-CM), can also strongly sustain in vivo angiogenesis in a murine model of acute myocardial infarction (MI) and stimulates human endothelial colony-forming cells (ECFCs), the only truly recognized endothelial progenitor, to form capillary-like structures in vitro. Preliminary work demonstrated that the hypoxic hAFS secretome (hAFS-CMHypo ) triggers intracellular Ca2+ oscillations in human ECFCs, but the underlying mechanisms and the downstream Ca2+ -dependent effectors remain elusive. Herein, we found that the secretome obtained by hAFS undergoing hypoxic preconditioning induced intracellular Ca2+ oscillations by promoting extracellular Ca2+ entry through Transient Receptor Potential Vanilloid 4 (TRPV4). TRPV4-mediated Ca2+ entry, in turn, promoted the concerted interplay between inositol-1,4,5-trisphosphate- and nicotinic acid adenine dinucleotide phosphate-induced endogenous Ca2+ release and store-operated Ca2+ entry (SOCE). hAFS-CMHypo -induced intracellular Ca2+ oscillations resulted in the nuclear translocation of the Ca2+ -sensitive transcription factor p65 NF-κB. Finally, inhibition of either intracellular Ca2+ oscillations or NF-κB activity prevented hAFS-CMHypo -induced ECFC tube formation. These data shed novel light on the molecular mechanisms whereby hAFS-CMHypo induces angiogenesis, thus providing useful insights for future therapeutic strategies against ischaemic-related myocardial injury.


Asunto(s)
Líquido Amniótico/metabolismo , Calcio/metabolismo , Medios de Cultivo Condicionados/química , Células Endoteliales/fisiología , FN-kappa B/metabolismo , Secretoma , Células Madre/citología , Líquido Amniótico/química , Células Cultivadas , Células Endoteliales/citología , Humanos , FN-kappa B/genética , Transporte de Proteínas , Transducción de Señal , Células Madre/metabolismo
3.
J Cell Physiol ; 236(1): 688-705, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32583526

RESUMEN

Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most recently discovered Ca2+ -releasing messenger that increases the intracellular Ca2+ concentration by mobilizing the lysosomal Ca2+ store through two-pore channels 1 (TPC1) and 2 (TPC2). NAADP-induced lysosomal Ca2+ release regulates multiple endothelial functions, including nitric oxide release and proliferation. A sizeable acidic Ca2+ pool endowed with TPC1 is also present in human endothelial colony-forming cells (ECFCs), which represent the only known truly endothelial precursors. Herein, we sought to explore the role of the lysosomal Ca2+ store and TPC1 in circulating ECFCs by harnessing Ca2+ imaging and molecular biology techniques. The lysosomotropic agent, Gly-Phe ß-naphthylamide, and nigericin, which dissipates the proton gradient which drives Ca2+ sequestration by acidic organelles, caused endogenous Ca2+ release in the presence of a replete inositol-1,4,5-trisphosphate (InsP3 )-sensitive endoplasmic reticulum (ER) Ca2+ pool. Likewise, the amount of ER releasable Ca2+ was reduced by disrupting lysosomal Ca2+ content. Liposomal delivery of NAADP induced a transient Ca2+ signal that was abolished by disrupting the lysosomal Ca2+ store and by pharmacological and genetic blockade of TPC1. Pharmacological manipulation revealed that NAADP-induced Ca2+ release also required ER-embedded InsP3 receptors. Finally, NAADP-induced lysosomal Ca2+ release was found to trigger vascular endothelial growth factor-induced intracellular Ca2+ oscillations and proliferation, while it did not contribute to adenosine-5'-trisphosphate-induced Ca2+ signaling. These findings demonstrated that NAADP-induced TPC1-mediated Ca2+ release can selectively be recruited to induce the Ca2+ response to specific cues in circulating ECFCs.


Asunto(s)
Canales de Calcio/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , NADP/análogos & derivados , Calcio/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Línea Celular , Retículo Endoplásmico/metabolismo , Células Endoteliales/metabolismo , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , NADP/metabolismo , NADP/farmacología , Factor A de Crecimiento Endotelial Vascular/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo
4.
Cell Mol Life Sci ; 77(11): 2235-2253, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31473770

RESUMEN

Neurovascular coupling (NVC) is the mechanism whereby an increase in neuronal activity causes an increase in local cerebral blood flow (CBF) to ensure local supply of oxygen and nutrients to the activated areas. The excitatory neurotransmitter glutamate gates post-synaptic N-methyl-D-aspartate receptors to mediate extracellular Ca2+ entry and stimulate neuronal nitric oxide (NO) synthase to release NO, thereby triggering NVC. Recent work suggested that endothelial Ca2+ signals could underpin NVC by recruiting the endothelial NO synthase. For instance, acetylcholine induced intracellular Ca2+ signals followed by NO release by activating muscarinic 5 receptors in hCMEC/D3 cells, a widely employed model of human brain microvascular endothelial cells. Herein, we sought to assess whether also glutamate elicits metabotropic Ca2+ signals and NO release in hCMEC/D3 cells. Glutamate induced a dose-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) that was blocked by α-methyl-4-carboxyphenylglycine and phenocopied by trans-1-amino-1,3-cyclopentanedicarboxylic acid, which, respectively, block and activate group 1 metabotropic glutamate receptors (mGluRs). Accordingly, hCMEC/D3 expressed both mGluR1 and mGluR5 and the Ca2+ response to glutamate was inhibited by their pharmacological blockade with, respectively, CPCCOEt and MTEP hydrochloride. The Ca2+ response to glutamate was initiated by endogenous Ca2+ release from the endoplasmic reticulum and endolysosomal Ca2+ store through inositol-1,4,5-trisphosphate receptors and two-pore channels, respectively, and sustained by store-operated Ca2+ entry. In addition, glutamate induced robust NO release that was suppressed by pharmacological blockade of the accompanying increase in [Ca2+]i. These data demonstrate for the first time that glutamate may induce metabotropic Ca2+ signals in human brain microvascular endothelial cells. The Ca2+ response to glutamate is likely to support NVC during neuronal activity, thereby reinforcing the emerging role of brain microvascular endothelial cells in the regulation of CBF.


Asunto(s)
Encéfalo/irrigación sanguínea , Señalización del Calcio , Células Endoteliales/metabolismo , Ácido Glutámico/metabolismo , Acoplamiento Neurovascular , Receptores de Glutamato Metabotrópico/metabolismo , Línea Celular , Células Endoteliales/citología , Humanos , Microvasos/citología , Microvasos/metabolismo , Óxido Nítrico/metabolismo
5.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34575985

RESUMEN

An increase in intracellular Ca2+ concentration ([Ca2+]i) controls virtually all endothelial cell functions and is, therefore, crucial to maintain cardiovascular homeostasis. An aberrant elevation in endothelial can indeed lead to severe cardiovascular disorders. Likewise, moderate amounts of reactive oxygen species (ROS) induce intracellular Ca2+ signals to regulate vascular functions, while excessive ROS production may exploit dysregulated Ca2+ dynamics to induce endothelial injury. Herein, we survey how ROS induce endothelial Ca2+ signals to regulate vascular functions and, vice versa, how aberrant ROS generation may exploit the Ca2+ handling machinery to promote endothelial dysfunction. ROS elicit endothelial Ca2+ signals by regulating inositol-1,4,5-trisphosphate receptors, sarco-endoplasmic reticulum Ca2+-ATPase 2B, two-pore channels, store-operated Ca2+ entry (SOCE), and multiple isoforms of transient receptor potential (TRP) channels. ROS-induced endothelial Ca2+ signals regulate endothelial permeability, angiogenesis, and generation of vasorelaxing mediators and can be exploited to induce therapeutic angiogenesis, rescue neurovascular coupling, and induce cancer regression. However, an increase in endothelial [Ca2+]i induced by aberrant ROS formation may result in endothelial dysfunction, inflammatory diseases, metabolic disorders, and pulmonary artery hypertension. This information could pave the way to design alternative treatments to interfere with the life-threatening interconnection between endothelial ROS and Ca2+ signaling under multiple pathological conditions.


Asunto(s)
Señalización del Calcio/genética , Sistema Cardiovascular/metabolismo , Células Endoteliales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Calcio/metabolismo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Células Endoteliales/patología , Homeostasis/genética , Humanos , Acoplamiento Neurovascular/genética
6.
J Cell Physiol ; 235(2): 1515-1530, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31310018

RESUMEN

The neuromodulator histamine is able to vasorelax in human cerebral, meningeal and temporal arteries via endothelial histamine 1 receptors (H1 Rs) which result in the downstream production of nitric oxide (NO), the most powerful vasodilator transmitter in the brain. Although endothelial Ca 2+ signals drive histamine-induced NO release throughout the peripheral circulation, the mechanism by which histamine evokes NO production in human cerebrovascular endothelial cells is still unknown. Herein, we exploited the human cerebral microvascular endothelial cell line, hCMEC/D3, to assess the role of intracellular Ca 2+ signaling in histamine-induced NO release. To achieve this goal, hCMEC/D3 cells were loaded with the Ca 2+ - and NO-sensitive dyes, Fura-2/AM and DAF-FM/AM, respectively. Histamine elicited repetitive oscillations in intracellular Ca 2+ concentration in hCMEC/D3 cells throughout a concentration range spanning from 1 pM up to 300 µM. The oscillatory Ca 2+ response was suppressed by the inhibition of H 1 Rs with pyrilamine, whereas H 1 R was abundantly expressed at the protein level. We further found that histamine-induced intracellular Ca 2+ oscillations were initiated by endogenous Ca 2+ mobilization through inositol-1,4,5-trisphosphate- and nicotinic acid dinucleotide phosphate-sensitive channels and maintained over time by store-operated Ca 2+ entry. In addition, histamine evoked robust NO release that was prevented by interfering with the accompanying intracellular Ca 2+ oscillations, thereby confirming that the endothelial NO synthase is recruited by Ca 2+ spikes also in hCMEC/D3 cells. These data provide the first evidence that histamine evokes NO production from human cerebrovascular endothelial cells through intracellular Ca 2+ oscillations, thereby shedding novel light on the mechanisms by which this neuromodulator controls cerebral blood flow.


Asunto(s)
Encéfalo/irrigación sanguínea , Calcio/metabolismo , Células Endoteliales/efectos de los fármacos , Histamina/farmacología , Microvasos/citología , Óxido Nítrico/metabolismo , Línea Celular , Células Endoteliales/metabolismo , Agonistas de los Receptores Histamínicos/farmacología , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , NADP/análogos & derivados , NADP/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
7.
J Autoimmun ; 112: 102486, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32482487

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune multisystem disease featured by an increased cardiovascular risk that may lead to premature patient's death. It has been demonstrated that SLE patients suffer from early onset endothelial dysfunction which is due to the impairment of endogenous vascular repair mechanisms. Vascular integrity and homeostasis are maintained by endothelial progenitor cells (EPCs), which are mobilized in response to endothelial injury to replace damaged endothelial cells. Two main EPCs subpopulations exist in peripheral blood: endothelial colony forming cells (ECFCs), which represent truly endothelial precursors and can physically engraft within neovessels, and myeloid angiogenic cells (MACs), which sustain angiogenesis in a paracrine manner. Emerging evidence indicates that ECFCs/MACs are down-regulated and display compromised angiogenic activity in SLE, thereby contributing to the pathogenesis of this disease. Intracellular calcium (Ca2+) signaling plays a crucial role in maintaining vascular integrity by stimulating migration, proliferation and tube formation in both ECFCs and MACs. Herein, we illustrate the evidences that support the role played by EPCs dysfunction in SLE. Subsequently, we discuss about the hypothesis that the Ca2+ handling machinery is compromised in SLE-derived ECFCs and MACs, thereby resulting in their reduced pro-angiogenic activity. Finally, we speculate about the proposal to exploit intracellular Ca2+ signaling to improve ECFCs' reparative phenotype and suggest this strategy as a new approach to treat SLE patients.


Asunto(s)
Señalización del Calcio/inmunología , Células Progenitoras Endoteliales/metabolismo , Lupus Eritematoso Sistémico/inmunología , Células Mieloides/metabolismo , Neovascularización Patológica/inmunología , Animales , Calcio/metabolismo , Movimiento Celular/inmunología , Proliferación Celular , Modelos Animales de Enfermedad , Células Progenitoras Endoteliales/inmunología , Humanos , Lupus Eritematoso Sistémico/patología , Células Mieloides/inmunología , Neovascularización Patológica/patología , Comunicación Paracrina/inmunología , Transducción de Señal/inmunología
8.
Int J Mol Sci ; 21(19)2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33036489

RESUMEN

Cardiovascular disease (CVD) comprises a range of major clinical cardiac and circulatory diseases, which produce immense health and economic burdens worldwide. Currently, vascular regenerative surgery represents the most employed therapeutic option to treat ischemic disorders, even though not all the patients are amenable to surgical revascularization. Therefore, more efficient therapeutic approaches are urgently required to promote neovascularization. Therapeutic angiogenesis represents an emerging strategy that aims at reconstructing the damaged vascular network by stimulating local angiogenesis and/or promoting de novo blood vessel formation according to a process known as vasculogenesis. In turn, circulating endothelial colony-forming cells (ECFCs) represent truly endothelial precursors, which display high clonogenic potential and have the documented ability to originate de novo blood vessels in vivo. Therefore, ECFCs are regarded as the most promising cellular candidate to promote therapeutic angiogenesis in patients suffering from CVD. The current briefly summarizes the available information about the origin and characterization of ECFCs and then widely illustrates the preclinical studies that assessed their regenerative efficacy in a variety of ischemic disorders, including acute myocardial infarction, peripheral artery disease, ischemic brain disease, and retinopathy. Then, we describe the most common pharmacological, genetic, and epigenetic strategies employed to enhance the vasoreparative potential of autologous ECFCs by manipulating crucial pro-angiogenic signaling pathways, e.g., extracellular-signal regulated kinase/Akt, phosphoinositide 3-kinase, and Ca2+ signaling. We conclude by discussing the possibility of targeting circulating ECFCs to rescue their dysfunctional phenotype and promote neovascularization in the presence of CVD.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Células Progenitoras Endoteliales/metabolismo , Isquemia/metabolismo , Isquemia/terapia , Trasplante de Células Madre , Animales , Biomarcadores , Diferenciación Celular , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Quimiotaxis , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Células Progenitoras Endoteliales/citología , Regulación de la Expresión Génica , Humanos , Isquemia/etiología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Neovascularización Fisiológica , Fenotipo , Transducción de Señal , Trasplante de Células Madre/métodos
9.
J Cell Physiol ; 234(4): 4540-4562, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30191989

RESUMEN

Basal forebrain neurons control cerebral blood flow (CBF) by releasing acetylcholine (Ach), which binds to endothelial muscarinic receptors to induce nitric (NO) release and vasodilation in intraparenchymal arterioles. Nevertheless, the mechanism whereby Ach stimulates human brain microvascular endothelial cells to produce NO is still unknown. Herein, we sought to assess whether Ach stimulates NO production in a Ca2+ -dependent manner in hCMEC/D3 cells, a widespread model of human brain microvascular endothelial cells. Ach induced a dose-dependent increase in intracellular Ca2+ concentration ([Ca2+ ]i ) that was prevented by the genetic blockade of M5 muscarinic receptors (M5-mAchRs), which was the only mAchR isoform coupled to phospholipase Cß (PLCß) present in hCMEC/D3 cells. A comprehensive real-time polymerase chain reaction analysis revealed the expression of the transcripts encoding for type 3 inositol-1,4,5-trisphosphate receptors (InsP3 R3), two-pore channels 1 and 2 (TPC1-2), Stim2, Orai1-3. Pharmacological manipulation showed that the Ca2+ response to Ach was mediated by InsP3 R3, TPC1-2, and store-operated Ca2+ entry (SOCE). Ach-induced NO release, in turn, was inhibited in cells deficient of M5-mAchRs. Likewise, Ach failed to increase NO levels in the presence of l-NAME, a selective NOS inhibitor, or BAPTA, a membrane-permeant intracellular Ca2+ buffer. Moreover, the pharmacological blockade of the Ca2+ response to Ach also inhibited the accompanying NO production. These data demonstrate for the first time that synaptically released Ach may trigger NO release in human brain microvascular endothelial cells by stimulating a Ca2+ signal via M5-mAchRs.


Asunto(s)
Acetilcolina/farmacología , Señalización del Calcio/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Microvasos/efectos de los fármacos , Agonistas Muscarínicos/farmacología , Acoplamiento Neurovascular/efectos de los fármacos , Óxido Nítrico/metabolismo , Prosencéfalo/irrigación sanguínea , Receptor Muscarínico M5/agonistas , Canales de Calcio/genética , Canales de Calcio/metabolismo , Canales de Calcio Activados por la Liberación de Calcio/genética , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Células Cultivadas , Células Endoteliales/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Microvasos/metabolismo , Receptor Muscarínico M5/genética , Receptor Muscarínico M5/metabolismo , Molécula de Interacción Estromal 2/genética , Molécula de Interacción Estromal 2/metabolismo , Transmisión Sináptica
10.
J Cell Physiol ; 234(4): 3538-3554, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30451297

RESUMEN

The neurotransmitter glutamate increases cerebral blood flow by activating postsynaptic neurons and presynaptic glial cells within the neurovascular unit. Glutamate does so by causing an increase in intracellular Ca2+ concentration ([Ca2+ ]i ) in the target cells, which activates the Ca2+ /Calmodulin-dependent nitric oxide (NO) synthase to release NO. It is unclear whether brain endothelial cells also sense glutamate through an elevation in [Ca2+ ]i and NO production. The current study assessed whether and how glutamate drives Ca2+ -dependent NO release in bEND5 cells, an established model of brain endothelial cells. We found that glutamate induced a dose-dependent oscillatory increase in [Ca2+ ]i , which was maximally activated at 200 µM and inhibited by α-methyl-4-carboxyphenylglycine, a selective blocker of Group 1 metabotropic glutamate receptors. Glutamate-induced intracellular Ca2+ oscillations were triggered by rhythmic endogenous Ca2+ mobilization and maintained over time by extracellular Ca2+ entry. Pharmacological manipulation revealed that glutamate-induced endogenous Ca2+ release was mediated by InsP3 -sensitive receptors and nicotinic acid adenine dinucleotide phosphate (NAADP) gated two-pore channel 1. Constitutive store-operated Ca2+ entry mediated Ca2+ entry during ongoing Ca2+ oscillations. Finally, glutamate evoked a robust, although delayed increase in NO levels, which was blocked by pharmacologically inhibition of the accompanying intracellular Ca2+ signals. Of note, glutamate induced Ca2+ -dependent NO release also in hCMEC/D3 cells, an established model of human brain microvascular endothelial cells. This investigation demonstrates for the first time that metabotropic glutamate-induced intracellular Ca2+ oscillations and NO release have the potential to impact on neurovascular coupling in the brain.


Asunto(s)
Encéfalo/irrigación sanguínea , Señalización del Calcio/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Ácido Glutámico/farmacología , Inositol 1,4,5-Trifosfato/metabolismo , NADP/análogos & derivados , Acoplamiento Neurovascular/efectos de los fármacos , Óxido Nítrico/metabolismo , Animales , Canales de Calcio/metabolismo , Línea Celular , Relación Dosis-Respuesta a Droga , Células Endoteliales/metabolismo , Humanos , Ratones , NADP/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Factores de Tiempo
11.
Int J Mol Sci ; 20(16)2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31416282

RESUMEN

It has long been known that endothelial Ca2+ signals drive angiogenesis by recruiting multiple Ca2+-sensitive decoders in response to pro-angiogenic cues, such as vascular endothelial growth factor, basic fibroblast growth factor, stromal derived factor-1α and angiopoietins. Recently, it was shown that intracellular Ca2+ signaling also drives vasculogenesis by stimulation proliferation, tube formation and neovessel formation in endothelial progenitor cells. Herein, we survey how growth factors, chemokines and angiogenic modulators use endothelial Ca2+ signaling to regulate angiogenesis and vasculogenesis. The endothelial Ca2+ response to pro-angiogenic cues may adopt different waveforms, ranging from Ca2+ transients or biphasic Ca2+ signals to repetitive Ca2+ oscillations, and is mainly driven by endogenous Ca2+ release through inositol-1,4,5-trisphosphate receptors and by store-operated Ca2+ entry through Orai1 channels. Lysosomal Ca2+ release through nicotinic acid adenine dinucleotide phosphate-gated two-pore channels is, however, emerging as a crucial pro-angiogenic pathway, which sustains intracellular Ca2+ mobilization. Understanding how endothelial Ca2+ signaling regulates angiogenesis and vasculogenesis could shed light on alternative strategies to induce therapeutic angiogenesis or interfere with the aberrant vascularization featuring cancer and intraocular disorders.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Endotelio/metabolismo , Neovascularización Fisiológica , Animales , Biomarcadores , Quimiocinas/metabolismo , Citocinas/metabolismo , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo
12.
Geroscience ; 46(1): 21-37, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38044400

RESUMEN

Emerging evidence from both clinical and preclinical studies underscores the role of aging in potentiating the detrimental effects of hypertension on cerebral microhemorrhages (CMHs, or cerebral microbleeds). CMHs progressively impair neuronal function and contribute to the development of vascular cognitive impairment and dementia. There is growing evidence showing accumulation of senescent cells within the cerebral microvasculature during aging, which detrimentally affects cerebromicrovascular function and overall brain health. We postulated that this build-up of senescent cells renders the aged cerebral microvasculature more vulnerable, and consequently, more susceptible to CMHs. To investigate the role of cellular senescence in CMHs' pathogenesis, we subjected aged mice, both with and without pre-treatment with the senolytic agent ABT263/Navitoclax, and young control mice to hypertension via angiotensin-II and L-NAME administration. The aged cohort exhibited a markedly earlier onset, heightened incidence, and exacerbated neurological consequences of CMHs compared to their younger counterparts. This was evidenced through neurological examinations, gait analysis, and histological assessments of CMHs in brain sections. Notably, the senolytic pre-treatment wielded considerable cerebromicrovascular protection, effectively delaying the onset, mitigating the incidence, and diminishing the severity of CMHs. These findings hint at the potential of senolytic interventions as a viable therapeutic avenue to preempt or alleviate the consequences of CMHs linked to aging, by counteracting the deleterious effects of senescence on brain microvasculature.


Asunto(s)
Compuestos de Anilina , Hipertensión , Senoterapéuticos , Sulfonamidas , Humanos , Ratones , Animales , Anciano , Envejecimiento/patología , Senescencia Celular
13.
Geroscience ; 46(1): 327-347, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38123890

RESUMEN

Age-related impairment of neurovascular coupling (NVC; "functional hyperemia") is a critical factor in the development of vascular cognitive impairment (VCI). Recent geroscience research indicates that cell-autonomous mechanisms alone cannot explain all aspects of neurovascular aging. Circulating factors derived from other organs, including pro-geronic factors (increased with age and detrimental to vascular homeostasis) and anti-geronic factors (preventing cellular aging phenotypes and declining with age), are thought to orchestrate cellular aging processes. This study aimed to investigate the influence of age-related changes in circulating factors on neurovascular aging. Heterochronic parabiosis was utilized to assess how exposure to young or old systemic environments could modulate neurovascular aging. Results demonstrated a significant decline in NVC responses in aged mice subjected to isochronic parabiosis (20-month-old C57BL/6 mice [A-(A)]; 6 weeks of parabiosis) when compared to young isochronic parabionts (6-month-old, [Y-(Y)]). However, exposure to young blood from parabionts significantly improved NVC in aged heterochronic parabionts [A-(Y)]. Conversely, young mice exposed to old blood from aged parabionts exhibited impaired NVC responses [Y-(A)]. In conclusion, even a brief exposure to a youthful humoral environment can mitigate neurovascular aging phenotypes, rejuvenating NVC responses. Conversely, short-term exposure to an aged humoral milieu in young mice accelerates the acquisition of neurovascular aging traits. These findings highlight the plasticity of neurovascular aging and suggest the presence of circulating anti-geronic factors capable of rejuvenating the aging cerebral microcirculation. Further research is needed to explore whether young blood factors can extend their rejuvenating effects to address other age-related cerebromicrovascular pathologies, such as blood-brain barrier integrity.


Asunto(s)
Acoplamiento Neurovascular , Ratones , Animales , Acoplamiento Neurovascular/fisiología , Rejuvenecimiento , Ratones Endogámicos C57BL , Envejecimiento/fisiología , Parabiosis
14.
Geroscience ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38914916

RESUMEN

Cerebral microhemorrhages (CMHs) are of paramount importance as they not only signify underlying vascular pathology but also have profound implications for cognitive function and neurological health, serving as a critical indicator for the early detection and management of vascular cognitive impairment (VCI). This study aimed to investigate the effects of hypertension-induced CMHs on gait dynamics in a mouse model, focusing on the utility of advanced gait metrics as sensitive indicators of subclinical neurological alterations associated with CMHs. To induce CMHs, we employed a hypertensive mouse model, using a combination of Angiotensin II and L-NAME to elevate blood pressure, further supplemented with phenylephrine to mimic transient blood pressure fluctuations. Gait dynamics were analyzed using the CatWalk system, with emphasis on symmetry indices for Stride Length (SL), Stride Time (ST), and paw print area, as well as measures of gait entropy and regularity. The study spanned a 30-day experimental period, capturing day-to-day variations in gait parameters to assess the impact of CMHs. Temporary surges in gait asymmetry, detected as deviations from median gait metrics, suggested the occurrence of subclinical neurological signs associated with approximately 50% of all histologically verified CMHs. Our findings also demonstrated that increases in gait entropy correlated with periods of increased gait asymmetry, providing insights into the complexity of gait dynamics in response to CMHs. Significant correlations were found between SL and ST symmetry indices and between these indices and the paw print area symmetry index post-hypertension induction, indicating the interdependence of spatial and temporal aspects of gait affected by CMHs. Collectively, advanced gait metrics revealed sensitive, dynamic alterations in gait regulation associated with CMHs, resembling the temporal characteristics of transient ischemic attacks (TIAs). This underscores their potential as non-invasive indicators of subclinical neurological impacts. This study supports the use of detailed gait analysis as a valuable tool for detecting subtle neurological changes, with implications for the early diagnosis and monitoring of cerebral small vessel disease (CSVD) in clinical settings.

15.
Geroscience ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727872

RESUMEN

Age-related cerebromicrovascular changes, including blood-brain barrier (BBB) disruption and microvascular rarefaction, play a significant role in the development of vascular cognitive impairment (VCI) and neurodegenerative diseases. Utilizing the unique model of heterochronic parabiosis, which involves surgically joining young and old animals, we investigated the influence of systemic factors on these vascular changes. Our study employed heterochronic parabiosis to explore the effects of young and aged systemic environments on cerebromicrovascular aging in mice. We evaluated microvascular density and BBB integrity in parabiotic pairs equipped with chronic cranial windows, using intravital two-photon imaging techniques. Our results indicate that short-term exposure to young systemic factors leads to both functional and structural rejuvenation of cerebral microcirculation. Notably, we observed a marked decrease in capillary density and an increase in BBB permeability to fluorescent tracers in the cortices of aged mice undergoing isochronic parabiosis (20-month-old C57BL/6 mice [A-(A)]; 6 weeks of parabiosis), compared to young isochronic parabionts (6-month-old, [Y-(Y)]). However, aged heterochronic parabionts (A-(Y)) exposed to young blood exhibited a significant increase in cortical capillary density and restoration of BBB integrity. In contrast, young mice exposed to old blood from aged parabionts (Y-(A)) rapidly developed cerebromicrovascular aging traits, evidenced by reduced capillary density and increased BBB permeability. These findings underscore the profound impact of systemic factors in regulating cerebromicrovascular aging. The rejuvenation observed in the endothelium, following exposure to young blood, suggests the existence of anti-geronic elements that counteract microvascular aging. Conversely, pro-geronic factors in aged blood appear to accelerate cerebromicrovascular aging. Further research is needed to assess whether the rejuvenating effects of young blood factors could extend to other age-related cerebromicrovascular pathologies, such as microvascular amyloid deposition and increased microvascular fragility.

16.
Exp Gerontol ; 194: 112510, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38964431

RESUMEN

Dietary modifications such as caloric restriction (CR) and intermittent fasting (IF) have gained popularity due to their proven health benefits in aged populations. In time restricted feeding (TRF), a form of intermittent fasting, the amount of time for food intake is regulated without restricting the caloric intake. TRF is beneficial for the central nervous system to support brain health in the context of aging. Therefore, we here ask whether TRF also exerts beneficial effects in the aged retina. We compared aged mice (24 months) on a TRF paradigm (access to food for six hours per day) for either 6 or 12 months against young control mice (8 months) and aged control mice on an ad libitum diet. We examined changes in the retina at the functional (electroretinography), structural (histology and fluorescein angiograms) and molecular (gene expression) level. TRF treatment showed amelioration of age-related reductions in both scotopic and photopic b-wave amplitudes suggesting benefits for retinal interneuron signaling. TRF did not affect age-related signs of retinal inflammation or microglial activation at either the molecular or histological level. Our data indicate that TRF helps preserve some aspects of retinal function that are decreased with aging, adding to our understanding of the health benefits that altered feeding patterns may confer.

17.
J Cereb Blood Flow Metab ; : 271678X241260526, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38867576

RESUMEN

Intra-vital visualization of deep cerebrovascular structures and blood flow in the aging brain has been a difficult challenge in the field of neurovascular research, especially when considering the key role played by the cerebrovasculature in the pathogenesis of both vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD). Traditional imaging methods face difficulties with the thicker skull of older brains, making high-resolution imaging and cerebral blood flow (CBF) assessment challenging. However, functional ultrasound (fUS) imaging, an emerging non-invasive technique, provides real-time CBF insights with notable spatial-temporal resolution. This study introduces an enhanced longitudinal fUS method for aging brains. Using elderly (24-month C57BL/6) mice, we detail replacing the skull with a polymethylpentene window for consistent fUS imaging over extended periods. Ultrasound localization mapping (ULM), involving the injection of a microbubble (<<10 µm) suspension allows for recording of high-resolution microvascular vessels and flows. ULM relies on the localization and tracking of single circulating microbubbles in the blood flow. A FIJI-based analysis interprets these high-quality ULM visuals. Testing on older mouse brains, our method successfully unveils intricate vascular specifics even in-depth, showcasing its utility for longitudinal studies that require ongoing evaluations of CBF and vascular aspects in aging-focused research.

18.
Redox Biol ; 73: 103189, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38788541

RESUMEN

Age-related endothelial dysfunction is a pivotal factor in the development of cardiovascular diseases, stemming, at least in part, from mitochondrial dysfunction and a consequential increase in oxidative stress. These alterations are central to the decline in vascular health seen with aging, underscoring the urgent need for interventions capable of restoring endothelial function for preventing cardiovascular diseases. Dietary interventions, notably time-restricted feeding (TRF), have been identified for their anti-aging effects on mitochondria, offering protection against age-associated declines in skeletal muscle and other organs. Motivated by these findings, our study aimed to investigate whether TRF could similarly exert protective effects on endothelial health in the vasculature, enhancing mitochondrial function and reducing oxidative stress. To explore this, 12-month-old C57BL/6 mice were placed on a TRF diet, with food access limited to a 6-h window daily for 12 months. For comparison, we included groups of young mice and age-matched controls with unrestricted feeding. We evaluated the impact of TRF on endothelial function by measuring acetylcholine-induced vasorelaxation of the aorta. Mitochondrial health was assessed using fluororespirometry, and vascular reactive oxygen species (ROS) production was quantified with the redox-sensitive dye dihydroethidium. We also quantified 4-hydroxynonenal (4-HNE) levels, a stable marker of lipid peroxidation, in the aorta using ELISA. Our findings demonstrated that aged mice on a standard diet exhibited significant impairments in aortic endothelial relaxation and mitochondrial function, associated with elevated vascular oxidative stress. Remarkably, the TRF regimen led to substantial improvements in these parameters, indicating enhanced endothelial vasorelaxation, better mitochondrial function, and reduced oxidative stress in the aortas of aged mice. This investigation establishes a vital foundation, paving the way for subsequent clinical research aimed at exploring the cardiovascular protective benefits of intermittent fasting.


Asunto(s)
Envejecimiento , Aorta , Endotelio Vascular , Mitocondrias , Estrés Oxidativo , Especies Reactivas de Oxígeno , Vasodilatación , Animales , Ratones , Mitocondrias/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Aorta/metabolismo , Aorta/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Envejecimiento/metabolismo , Masculino , Ratones Endogámicos C57BL , Aldehídos/metabolismo , Aldehídos/farmacología
19.
Front Aging Neurosci ; 15: 1149820, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37020858

RESUMEN

Transient receptor potential (TRP) proteins are part of a superfamily of polymodal cation channels that can be activated by mechanical, physical, and chemical stimuli. In the vascular endothelium, TRP channels regulate two fundamental parameters: the membrane potential and the intracellular Ca2+ concentration [(Ca2+)i]. TRP channels are widely expressed in the cerebrovascular endothelium, and are emerging as important mediators of several brain microvascular functions (e.g., neurovascular coupling, endothelial function, and blood-brain barrier permeability), which become impaired with aging. Aging is the most significant risk factor for vascular cognitive impairment (VCI), and the number of individuals affected by VCI is expected to exponentially increase in the coming decades. Yet, there are currently no preventative or therapeutic treatments available against the development and progression of VCI. In this review, we discuss the involvement of endothelial TRP channels in diverse physiological processes in the brain as well as in the pathogenesis of age-related VCI to explore future potential neuroprotective strategies.

20.
Curr Med Chem ; 30(40): 4506-4532, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36703602

RESUMEN

Hydrogen sulfide (H2S) is an endogenous gaseous molecule present in all living organisms that has been traditionally studied for its toxicity. Interestingly, increased understanding of H2S effects in organ physiology has recently shown its relevance as a signalling molecule, with potentially important implications in variety of clinical disorders, including cancer. H2S is primarily produced in mammalian cells under various enzymatic pathways are target of intense research biological mechanisms, and therapeutic effects of H2S. Herein, we describe the physiological and biochemical properties of H2S, the enzymatic pathways leading to its endogenous production and its catabolic routes. In addition, we discuss the role of currently known H2S-releasing agents, or H2S donors, including their potential as therapeutic tools. Then we illustrate the mechanisms known to support the pleiotropic effects of H2S, with a particular focus on persulfhydration, which plays a key role in H2S-mediating signalling pathways. We then address the paradoxical role played by H2S in tumour biology and discuss the potential of exploiting H2S levels as novel cancer biomarkers and diagnostic tools. Finally, we describe the most recent preclinical applications focused on assessing the anti-cancer impact of most common H2S-releasing compounds. While the evidence in favour of H2S as an alternative cancer therapy in the field of translational medicine is yet to be clearly provided, application of H2S is emerging as a potent anticancer therapy in preclinical trails.


Asunto(s)
Sulfuro de Hidrógeno , Neoplasias , Profármacos , Animales , Humanos , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/uso terapéutico , Sulfuro de Hidrógeno/química , Profármacos/farmacología , Profármacos/uso terapéutico , Transducción de Señal , Neoplasias/tratamiento farmacológico , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA