Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; : e0202023, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884472

RESUMEN

Human noroviruses (HuNoVs) are a diverse group of RNA viruses that cause endemic and pandemic acute viral gastroenteritis. Previously, we reported that many HuNoV strains require bile or bile acid (BA) to infect human jejunal intestinal enteroid cultures. BA was not essential for the replication of a pandemic-causing GII.4 HuNoV strain. We found the hydrophobic BA glycochenodeoxycholic acid (GCDCA) promotes the replication of the BA-dependent strain GII.3 in jejunal enteroids. Furthermore, we found that inhibition of the G-protein-coupled BA receptor, sphingosine-1-phosphate receptor 2 (S1PR2), by JTE-013, reduced GII.3 infection dose-dependently and inhibited GII.3 cellular uptake in enteroids. Herein, we sought to determine whether S1PR2 is required for other BA-dependent HuNoV strains, the BA-independent GII.4, and whether S1PR2 is required for BA-dependent HuNoV infection in HIEs from other small intestinal segments. We found a second S1PR2 inhibitor, GLPG2938, reduces GII.3 infection dose-dependently, and an S1PR2 agonist (CYM-5520) enhances GII.3 replication in the absence of GCDCA. GII.3 replication also is abrogated in the presence of JTE-013 and CYM-5520. JTE-013 inhibition of S1PR2 in jejunal HIEs reduces GI.1, GII.3, and GII.17 (BA-dependent) but not GII.4 Sydney (BA-independent) infection, providing additional evidence of strain-specific differences in HuNoV infection. Finally, GII.3 infection of duodenal, jejunal, and ileal lines derived from the same individual is reduced with S1PR2 inhibition, indicating a common mechanism of BA-dependent infection among multiple segments of the small intestine. Our results support a model where BA-dependent HuNoVs exploit BA effects on S1PR2 to infect the entire small intestine.IMPORTANCEHuman noroviruses (HuNoVs) are important viral human pathogens that cause both outbreaks and sporadic gastroenteritis. These viruses are diverse, and many strains are capable of infecting humans. Our previous studies have identified strain-specific requirements for hydrophobic bile acids (BAs) to infect intestinal epithelial cells. Moreover, we identified a BA receptor, sphingosine-1-phosphate receptor 2 (S1PR2), required for infection by a BA-dependent strain. To better understand how various HuNoV strains enter and infect the small intestine and the role of S1PR2 in HuNoV infection, we evaluated infection by additional HuNoV strains using an expanded repertoire of intestinal enteroid cell lines. We found that multiple BA-dependent strains, but not a BA-independent strain, all require S1PR2 for infection. In addition, BA-dependent infection requires S1PR2 in multiple segments of the small intestine. Together, these results indicate that S1PR2 has value as a potential therapeutic target for BA-dependent HuNoV infection.

2.
J Infect Dis ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864524

RESUMEN

BACKGROUND: The in vitro cultivation of human noroviruses allows a comparison of antibody levels measured in neutralization and histoblood group antigen (HBGA)-blocking assays. METHODS: Serum samples collected during the evaluation of an investigational norovirus vaccine (HIL-214 [formerly TAK-214]) were assayed for neutralizing antibody levels against the vaccine's prototype Norwalk virus/GI.1 (P1) virus strain. Results were compared to those previously determined using HBGA-blocking assays. RESULTS: Neutralizing antibody seroresponses were observed in 83% of 24 vaccinated adults, and antibody levels were highly correlated (r=0.81, P<0.001) with those measured by HBGA-blocking. CONCLUSIONS: GI.1-specific HBGA-blocking antibodies are a surrogate for neutralization of GI.1 norovirus.

3.
J Infect Dis ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37781879

RESUMEN

A GII.2 outbreak in an efficacy study of a bivalent virus-like particle (VLP) norovirus vaccine, TAK-214, in healthy US adults provided an opportunity to examine GII.4 homotypic vs. GII.2 heterotypic responses to vaccination and infection. Three serological assays (VLP-binding, histoblood group antigen-blocking, and neutralizing) were performed for each genotype. Results were highly correlated within a genotype but not between genotypes. Although the vaccine provided protection from GII.2-associated disease, little GII.2-specific neutralization occurred after vaccination. Choice of antibody assay can affect assessments of human norovirus vaccine immunogenicity.

4.
Antimicrob Agents Chemother ; 67(10): e0063623, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37787556

RESUMEN

Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis. In immunocompetent hosts, symptoms usually resolve within 3 days; however, in immunocompromised persons, HuNoV infection can become persistent, debilitating, and sometimes life-threatening. There are no licensed therapeutics for HuNoV due to a near half-century delay in its cultivation. Treatment for chronic HuNoV infection in immunosuppressed patients anecdotally includes nitazoxanide, a broad-spectrum antimicrobial licensed for treatment of parasite-induced gastroenteritis. Despite its off-label use for chronic HuNoV infection, nitazoxanide has not been clearly demonstrated to be an effective treatment. In this study, we standardized a pipeline for antiviral testing using multiple human small intestinal enteroid lines representing different intestinal segments and evaluated whether nitazoxanide inhibits replication of five HuNoV strains in vitro. Nitazoxanide did not exhibit high selective antiviral activity against any HuNoV strain tested, indicating it is not an effective antiviral for HuNoV infection. Human intestinal enteroids are further demonstrated as a model to serve as a preclinical platform to test antivirals against HuNoVs to treat gastrointestinal disease. Abstr.


Asunto(s)
Infecciones por Caliciviridae , Gastroenteritis , Norovirus , Humanos , Gastroenteritis/tratamiento farmacológico , Antivirales/farmacología , Antivirales/uso terapéutico , Estándares de Referencia , Infecciones por Caliciviridae/tratamiento farmacológico , Replicación Viral
5.
Proc Natl Acad Sci U S A ; 117(3): 1700-1710, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31896578

RESUMEN

Human noroviruses (HuNoVs) cause sporadic and epidemic outbreaks of gastroenteritis in all age groups worldwide. We previously reported that stem cell-derived human intestinal enteroid (HIE) cultures support replication of multiple HuNoV strains and that some strains (e.g., GII.3) replicate only in the presence of bile. Heat- and trypsin-treatment of bile did not reduce GII.3 replication, indicating a nonproteinaceous component in bile functions as an active factor. Here we show that bile acids (BAs) are critical for GII.3 replication and replication correlates with BA hydrophobicity. Using the highly effective BA, glycochenodeoxycholic acid (GCDCA), we show BAs act during the early stage of infection, BA-dependent replication in HIEs is not mediated by detergent effects or classic farnesoid X receptor or Takeda G protein-coupled receptor 5 signaling but involves another G protein-coupled receptor, sphingosine-1-phosphate receptor 2, and BA treatment of HIEs increases particle uptake. We also demonstrate that GCDCA induces multiple cellular responses that promote GII.3 replication in HIEs, including enhancement of 1) endosomal uptake, 2) endosomal acidification and subsequent activity of endosomal/lysosomal enzyme acid sphingomyelinase (ASM), and 3) ceramide levels on the apical membrane. Inhibitors of endosomal acidification or ASM reduce GII.3 infection and exogenous addition of ceramide alone permits infection. Furthermore, inhibition of lysosomal exocytosis of ASM, which is required for ceramide production at the apical surface, decreases GII.3 infection. Together, our results support a model where GII.3 exploits rapid BA-mediated cellular endolysosomal dynamic changes and cellular ceramide to enter and replicate in jejunal HIEs.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Ceramidas/metabolismo , Intestinos/virología , Norovirus/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Ácidos y Sales Biliares/farmacología , Ceramidas/farmacología , Ácido Glicoquenodesoxicólico , Humanos , Receptores Acoplados a Proteínas G , Esfingomielina Fosfodiesterasa/metabolismo , Receptores de Esfingosina-1-Fosfato
6.
J Infect Dis ; 221(5): 739-743, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31613328

RESUMEN

BACKGROUND: The development of an in vitro cultivation system for human noroviruses allows the measurement of neutralizing antibody levels. METHODS: Serum neutralizing antibody levels were determined using a GII.4/Sydney/2012-like virus in human intestinal enteroids in samples collected before and 4 weeks after administration of an investigational norovirus vaccine and were compared with those measured in histo-blood group antigen (HBGA)-blocking assays. RESULTS: Neutralizing antibody seroresponses were observed in 71% of 24 vaccinated adults, and antibody levels were highly correlated (r = 0.82, P < .001) with those measured by HBGA blocking. CONCLUSIONS: HBGA-blocking antibodies are a surrogate for neutralization in human noroviruses. CLINICAL TRIALS REGISTRATION: NCT02475278.


Asunto(s)
Anticuerpos Bloqueadores/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antígenos de Grupos Sanguíneos/inmunología , Infecciones por Caliciviridae/prevención & control , Norovirus/inmunología , Vacunación , Vacunas Virales/inmunología , Adolescente , Adulto , Anticuerpos Antivirales/análisis , Infecciones por Caliciviridae/virología , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Adulto Joven
7.
J Infect Dis ; 212(3): 397-405, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25635121

RESUMEN

BACKGROUND: Noroviruses are a leading cause of acute gastroenteritis worldwide. Mucosal and cellular immune responses remain poorly understood, with most studies of noroviruses having focused on serological responses to infection. METHODS: We used saliva, feces, and peripheral blood mononuclear cells collected from persons who were administered Norwalk virus (NV) to characterize mucosal (salivary and fecal immunoglobulin A [IgA]) and cellular (NV-specific IgA and immunoglobulin G [IgG] antibody-secreting cells and total and NV-specific IgA and IgG memory B cells) immune responses following infection. RESULTS: Prechallenge levels of NV-specific salivary IgA and NV-specific memory IgG cells correlated with protection from gastroenteritis, whereas prechallenge levels of NV-specific fecal IgA correlated with a reduced viral load. Antibody-secreting cell responses were biased toward IgA, while memory B-cell responses were biased toward IgG. NV-specific memory B cells but not antibody-secreting cells persisted 180 days after infection. CONCLUSIONS: NV-specific salivary IgA and NV-specific memory IgG cells were identified as new correlates of protection against NV gastroenteritis. Understanding the relative importance of mucosal, cellular, and humoral immunity is important in developing vaccine strategies for norovirus disease prevention.


Asunto(s)
Anticuerpos Antivirales/inmunología , Infecciones por Caliciviridae/inmunología , Gastroenteritis/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Virus Norwalk/inmunología , Adulto , Anticuerpos Antivirales/sangre , Infecciones por Caliciviridae/virología , Heces/química , Gastroenteritis/virología , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Leucocitos Mononucleares/inmunología , Saliva/química
8.
J Clin Microbiol ; 53(12): 3916-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26447115

RESUMEN

The performance of a norovirus antigen detection assay was assessed using monoclonal antibody NV23 and single-chain antibody HJT-R3-A9 to identify both virus-like particles and virus-containing fecal samples. The detection of 25 different norovirus genotypes as recombinant virus-like particles or in clinical samples was dependent on virus or antigen concentration.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos Virales/análisis , Infecciones por Caliciviridae/diagnóstico , Heces/virología , Norovirus/aislamiento & purificación , Anticuerpos de Cadena Única/inmunología , Humanos
9.
J Infect Dis ; 209(7): 1016-22, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24253285

RESUMEN

BACKGROUND: Noroviruses are the most common cause of gastroenteritis in the United States. An understanding of the infectious dose of these viruses is important for risk assessment studies. METHODS: Healthy adults were enrolled in a randomized, double-blind, placebo-controlled evaluation of different dosages of Norwalk virus. Eligible subjects were monitored for clinical gastroenteritis, and infection status was determined. The presence of virus in vomitus was also assessed. RESULTS: Fifty-seven persons were enrolled; 8 received placebo and an additional 8 persons were considered to be nonsusceptible on the basis of being secretor negative. Twenty-one persons were infected (all blood group O or A), and 67% of those infected developed viral gastroenteritis. The 50% human infectious dose was calculated to be 3.3 reverse transcription polymerase chain reaction units (approximately 1320 genomic equivalents [gEq]) for secretor-positive blood group O or A persons and 7.0 (approximately 2800 gEq) for all secretor-positive persons. The time of illness onset was inversely correlated with inoculum dose. The maximal concentration of virus shedding was higher for persons with gastroenteritis. Norwalk virus was identified in 15 of 27 (56%) vomitus samples at a median concentration of 41 000 gEq/mL. CONCLUSIONS: The 50% human infectious dose measured is higher than previous estimates and similar to that of other RNA viruses. Clinical Trials Registration NCT00138476.


Asunto(s)
Infecciones por Caliciviridae/virología , Gastroenteritis/virología , Virus Norwalk/patogenicidad , Adulto , Heces/virología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Placebos/administración & dosificación , Esparcimiento de Virus , Adulto Joven
10.
bioRxiv ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38853945

RESUMEN

Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis worldwide. Currently, there are no targeted antivirals for the treatment of HuNoV infection. Histo-blood group antigens (HBGAs) on the intestinal epithelium are cellular attachment factors for HuNoVs; molecules that block the binding of HuNoVs to HBGAs thus have the potential to be developed as antivirals. Human milk oligosaccharides (HMOs) are glycans in human milk with structures analogous to HBGAs. HMOs have been shown to act as decoy receptors to prevent the attachment of multiple enteric pathogens to host cells. Previous X-ray crystallography studies have demonstrated the binding of HMO 2'-fucosyllactose (2'FL) in the same pocket as HBGAs for some HuNoV strains. We evaluated the effect of 2'FL on the replication of a globally dominant GII.4 Sydney [P16] HuNoV strain using human intestinal enteroids (HIEs) from adults and children. A significant reduction in GII.4 Sydney [P16] replication was seen in duodenal and jejunal HIEs from multiple adult donors, all segments of the small intestine from an adult organ donor and in two pediatric duodenal HIEs. However, 2'FL did not inhibit HuNoV replication in two infant jejunal HIEs that had significantly lower expression of α1-2-fucosylated glycans. 2'FL can be synthesized in large scale, and safety and tolerance have been assessed previously. Our data suggest that 2'FL has the potential to be developed as a therapeutic for HuNoV gastroenteritis.

11.
bioRxiv ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38260626

RESUMEN

Human noroviruses (HuNoVs) are a diverse group of RNA viruses that cause both endemic and pandemic acute viral gastroenteritis. Previously we reported that many strains of HuNoV require bile or bile acid (BA) to infect human jejunal intestinal enteroid cultures. Of note, BA was not essential for replication of a pandemic-causing GII.4 HuNoV strain. Using the BA-requiring strain GII.3, we found that the hydrophobic BA GCDCA induces multiple cellular responses that promote replication in jejunal enteroids. Further, we found that chemical inhibition of the G-protein coupled receptor, sphingosine-1- phosphate receptor 2 (S1PR2), by JTE-013 reduced both GII.3 infection in a dose- dependent manner and cellular uptake in enteroids. Herein, we sought to determine if S1PR2 is required by other BA-dependent HuNoV strains and BA-independent GII.4, and if S1PR2 is required for BA-dependent HuNoV infection in other segments of the small intestine. We found JTE-013 inhibition of S1PR2 in jejunal HIEs reduces GI.1, GII.3, and GII.17 (BA-dependent) but not the GII.4 Sydney variant (BA-independent) infection, providing additional evidence of strain-specific differences in HuNoV infection. GII.3 infection of duodenal, jejunal and ileal lines derived from the same individual was also reduced with S1PR2 inhibition, indicating a common mechanism of BA-dependent infection among multiple segments of the small intestine. Our results support a model where BA-dependent HuNoV exploit the activation of S1PR2 by BA to infect the entire small intestine. Importance: Human noroviruses (HuNoVs) are important viral human pathogens that cause both outbreaks and sporadic gastroenteritis. These viruses are diverse, and many strains are capable of infecting humans. Our previous studies have identified strain-specific requirements for hydrophobic bile acids (BAs) to infect intestinal epithelial cells. Moreover, we identified a BA receptor, sphingosine-1-phosphate receptor 2 (S1PR2), required for infection by a BA-dependent strain. To better understand how various HuNoV strains enter and infect the small intestine and the role of S1PR2 in HuNoV infection, we evaluated infection by additional HuNoV strains using an expanded repertoire of intestinal enteroid cell lines. We found that multiple BA-dependent strains, but not a BA- independent strain, all required S1PR2 for infection. Additionally, BA-dependent infection required S1PR2 in multiple segments of the small intestine. Together these results indicate S1PR2 has value as a potential therapeutic target for BA-dependent HuNoV infection.

12.
bioRxiv ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38826387

RESUMEN

Human noroviruses (HuNoVs) are a significant cause of both epidemic and sporadic acute gastroenteritis worldwide. The lack of a reproducible culture system for HuNoVs was a major obstacle in studying virus replication and pathogenesis for almost a half-century. This barrier was overcome with our successful cultivation of multiple HuNoV strains in human intestinal enteroids (HIEs), which has significantly advanced HuNoV research. We previously optimized culture media conditions and generated genetically-modified HIE cultures to enhance HuNoV replication in HIEs. Building upon these achievements, we now present additional advancements to this culture system, which involve testing different media, unique HIE lines, and additional virus strains. HuNoV infectivity was evaluated and compared in new HIE models, including HIEs generated from different intestinal segments of individual adult organ donors, HIEs made from human embryonic stem cell-derived human intestinal organoids that were transplanted into mice (H9tHIEs), genetically-engineered (J4 FUT2 knock-in [ KI ], J2 STAT1 knock-out [ KO ]) HIEs, as well as HIEs derived from a patient with common variable immunodeficiency (CVID) and from infants. Our findings reveal that small intestinal HIEs, but not colonoids, from adults, H9tHIEs, HIEs from a CVID patient, and HIEs from infants support HuNoV replication with segment and strain-specific differences in viral infection. J4 FUT2-KI HIEs exhibit the highest susceptibility to HuNoV infection, allowing the cultivation of a broader range of GI and GII HuNoV strains than previously reported. Overall, these results contribute to a deeper understanding of HuNoVs and highlight the transformative potential of HIE cultures in HuNoV research. Importance: Human noroviruses (HuNoVs) are very contagious and cause significant acute gastroenteritis globally, but studying them has been hindered by the lack of a reproducible culture system for nearly 50 years. This barrier was overcome by successfully cultivating multiple HuNoV strains in human intestinal enteroids (HIEs), advancing HuNoV research. We previously optimized culture conditions and developed genetically modified HIEs to enhance HuNoV replication. In this study, we tested different media, unique HIE lines, and additional virus strains, evaluating HuNoV infectivity in new HIE models. These models include HIEs from various intestinal segments of adult donors, human embryonic stem cell-derived HIEs transplanted into mice (H9tHIEs), genetically-engineered HIEs (J4 FUT2 knock-in [ KI ], J2 STAT1 knock-out [ KO ]), HIEs from a common variable immunodeficiency (CVID) patient, and from infants. Our findings show that adult small intestinal HIEs, H9tHIEs, CVID patient HIEs, and infant HIEs support HuNoV replication with segment and strain-specific differences. J4 FUT2-KI HIEs exhibited the highest susceptibility, allowing cultivation of a broader range of HuNoV strains. These results enhance the understanding of HuNoVs and highlight the transformative potential of HIE cultures in HuNoV research.

13.
NPJ Vaccines ; 8(1): 87, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280322

RESUMEN

Human noroviruses (HuNoV) are the leading cause of acute gastroenteritis worldwide. The humoral immune response plays an important role in clearing HuNoV infections and elucidating the antigenic landscape of HuNoV during an infection can shed light on antibody targets to inform vaccine design. Here, we utilized Jun-Fos-assisted phage display of a HuNoV genogroup GI.1 genomic library and deep sequencing to simultaneously map the epitopes of serum antibodies of six individuals infected with GI.1 HuNoV. We found both unique and common epitopes that were widely distributed among both nonstructural proteins and the major capsid protein. Recurring epitope profiles suggest immunodominant antibody footprints among these individuals. Analysis of sera collected longitudinally from three individuals showed the presence of existing epitopes in the pre-infection sera, suggesting these individuals had prior HuNoV infections. Nevertheless, newly recognized epitopes surfaced seven days post-infection. These new epitope signals persisted by 180 days post-infection along with the pre-infection epitopes, suggesting a persistent production of antibodies recognizing epitopes from previous and new infections. Lastly, analysis of a GII.4 genotype genomic phage display library with sera of three persons infected with GII.4 virus revealed epitopes that overlapped with those identified in GI.1 affinity selections, suggesting the presence of GI.1/GII.4 cross-reactive antibodies. The results demonstrate that genomic phage display coupled with deep sequencing can characterize HuNoV antigenic landscapes from complex polyclonal human sera to reveal the timing and breadth of the human humoral immune response to infection.

14.
bioRxiv ; 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37293103

RESUMEN

Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis. In immunocompetent hosts, symptoms usually resolve within three days; however, in immunocompromised persons, HuNoV infection can become persistent, debilitating, and sometimes life-threatening. There are no licensed therapeutics for HuNoV due to a near half-century delay in its cultivation. Treatment for chronic HuNoV infection in immunosuppressed patients anecdotally includes nitazoxanide, a broad-spectrum antimicrobial licensed for treatment of parasite-induced gastroenteritis. Despite its off-label use for chronic HuNoV infection, nitazoxanide has not been clearly demonstrated to be an effective treatment. In this study, we established a standardized pipeline for antiviral testing using multiple human small intestinal enteroid (HIE) lines representing different intestinal segments and evaluated whether nitazoxanide inhibits replication of 5 HuNoV strains in vitro . Nitazoxanide did not exhibit high selective antiviral activity against any HuNoV strains tested, indicating it is not an effective antiviral for norovirus infection. HIEs are further demonstrated as a model to serve as a pre-clinical platform to test antivirals against human noroviruses to treat gastrointestinal disease.

15.
Nat Commun ; 14(1): 1148, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854760

RESUMEN

Globally, most cases of gastroenteritis are caused by pandemic GII.4 human norovirus (HuNoV) strains with no approved therapies or vaccines available. The cellular pathways that these strains exploit for cell entry and internalization are unknown. Here, using nontransformed human jejunal enteroids (HIEs) that recapitulate the physiology of the gastrointestinal tract, we show that infectious GII.4 virions and virus-like particles are endocytosed using a unique combination of endosomal acidification-dependent clathrin-independent carriers (CLIC), acid sphingomyelinase (ASM)-mediated lysosomal exocytosis, and membrane wound repair pathways. We found that besides the known interaction of the viral capsid Protruding (P) domain with host glycans, the Shell (S) domain interacts with both galectin-3 (gal-3) and apoptosis-linked gene 2-interacting protein X (ALIX), to orchestrate GII.4 cell entry. Recognition of the viral and cellular determinants regulating HuNoV entry provides insight into the infection process of a non-enveloped virus highlighting unique pathways and targets for developing effective therapeutics.


Asunto(s)
Membrana Celular , Norovirus , Internalización del Virus , Humanos , Clatrina , Norovirus/fisiología , Transducción de Señal , Membrana Celular/virología
16.
Nat Commun ; 14(1): 6516, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845211

RESUMEN

Acute gastroenteritis caused by human noroviruses (HuNoVs) is a significant global health and economic burden and is without licensed vaccines or antiviral drugs. The GII.4 HuNoV causes most epidemics worldwide. This virus undergoes epochal evolution with periodic emergence of variants with new antigenic profiles and altered specificity for histo-blood group antigens (HBGA), the determinants of cell attachment and susceptibility, hampering the development of immunotherapeutics. Here, we show that a llama-derived nanobody M4 neutralizes multiple GII.4 variants with high potency in human intestinal enteroids. The crystal structure of M4 complexed with the protruding domain of the GII.4 capsid protein VP1 revealed a conserved epitope, away from the HBGA binding site, fully accessible only when VP1 transitions to a "raised" conformation in the capsid. Together with dynamic light scattering and electron microscopy of the GII.4 VLPs, our studies suggest a mechanism in which M4 accesses the epitope by altering the conformational dynamics of the capsid and triggering its disassembly to neutralize GII.4 infection.


Asunto(s)
Antígenos de Grupos Sanguíneos , Infecciones por Caliciviridae , Norovirus , Humanos , Proteínas de la Cápside/química , Cápside/metabolismo , Norovirus/genética , Sitios de Unión , Epítopos/metabolismo , Antígenos de Grupos Sanguíneos/metabolismo
17.
Virol J ; 9: 181, 2012 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-22943503

RESUMEN

BACKGROUND: Our previous report that the Norwalk virus nonstructural protein p22 is an antagonist of the cellular secretory pathway suggests a new aspect of norovirus/host interaction. To explore conservation of function of this highly divergent calicivirus protein, we examined the effects of p22 homologues from four human and two murine noroviruses, and feline calicivirus on the secretory pathway. FINDINGS: All human noroviruses examined induced Golgi disruption and inhibited protein secretion, with the genogroup II.4 Houston virus being the most potent antagonist. Genogroup II.6 viruses have a conserved mutation in the mimic of an Endoplasmic Reticulum export signal (MERES) motif that is highly conserved in human norovirus homologues of p22 and is critical for secretory pathway antagonism, and these viruses had reduced levels of Golgi disruption and inhibition of protein secretion. p22 homologues from both persistent and nonpersistent strains of murine norovirus induced Golgi disruption, but only mildly inhibited cellular protein secretion. Feline calicivirus p30 did not induce Golgi disruption or inhibit cellular protein secretion. CONCLUSIONS: These differences confirm a norovirus-specific effect on host cell secretory pathway antagonism by homologues of p22, which may affect viral replication and/or cellular pathogenesis.


Asunto(s)
Interacciones Huésped-Patógeno , Virus Norwalk/genética , Virus Norwalk/patogenicidad , Vías Secretoras , Proteínas no Estructurales Virales/metabolismo , Factores de Virulencia/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Aparato de Golgi/virología , Humanos , Datos de Secuencia Molecular , Alineación de Secuencia , Proteínas no Estructurales Virales/genética , Factores de Virulencia/genética
18.
mBio ; 13(2): e0284821, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35297675

RESUMEN

Human norovirus (HuNoV) is the leading cause of epidemic and sporadic acute gastroenteritis worldwide. HuNoV transmission occurs predominantly by direct person-to-person contact, and its health burden is associated with poor hand hygiene and a lack of effective antiseptics and disinfectants. Specific therapies and methods to prevent and control HuNoV spread previously were difficult to evaluate because of the lack of a cell culture system to propagate infectious virus. This barrier has been overcome with the successful cultivation of HuNoV in nontransformed human intestinal enteroids (HIEs). Here, we report using the HIE cultivation system to evaluate the virucidal efficacy of an olanexidine gluconate-based hand rub (OLG-HR) and 70% ethanol (EtOH70%) against HuNoVs. OLG-HR exhibited fast-acting virucidal activity against a spectrum of HuNoVs including GII.4 Sydney[P31], GII.4 Den Haag[P4], GII.4 New Orleans[P4], GII.3[P21], GII.17[P13], and GI.1[P1] strains. Exposure of HuNoV to OLG-HR for 30 to 60 s resulted in complete loss of the ability of virus to bind to the cells and reduced in vitro binding to glycans in porcine gastric mucin. By contrast, the virucidal efficiency of EtOH70% on virus infectivity was strain specific. Dynamic light scattering (DLS) and electron microscopy of virus-like particles (VLPs) show that OLG-HR treatment causes partial disassembly and possibly conformational changes in VP1, interfering with histo-blood group antigen (HBGA) binding and infectivity, whereas EtOH70% treatment causes particle disassembly and clumping of the disassembled products, leading to loss of infectivity while retaining HBGA binding. The highly effective inactivation of HuNoV infectivity by OLG-HR suggests that this compound could reduce HuNoV transmission. IMPORTANCE Human noroviruses (HuNoVs) are highly contagious and cause nonbacterial acute gastroenteritis in all age groups worldwide. Since the introduction of rotavirus vaccines, HuNoVs have become the leading cause of diarrheal illness in children. These viruses are very stable in the environment and resistant to common disinfectants. This study evaluated the virucidal efficacy of a new disinfectant, olanexidine-based hand rub (OLG-HR), against HuNoV strains in an ex vivo human intestinal stem cell-derived enteroid (HIE) cultivation system. Exposure of multiple HuNoV strains to OLG-HR for 30 to 60 s resulted in complete loss of infectivity and binding to HBGAs, possibly due to partial disassembly and conformational changes in the major virus capsid (VP1). By comparison, the virucidal efficiency of EtOH70% was strain specific, leading to loss of infectivity while retaining HBGA binding. These findings show the utility of the ex vivo HIE cultivation system to test the effectiveness of disinfectants and report a highly effective product.


Asunto(s)
Antígenos de Grupos Sanguíneos , Desinfectantes , Gastroenteritis , Norovirus , Animales , Antivirales/metabolismo , Antivirales/farmacología , Biguanidas , Antígenos de Grupos Sanguíneos/metabolismo , Desinfectantes/metabolismo , Desinfectantes/farmacología , Humanos , Norovirus/fisiología , Porcinos
19.
Open Forum Infect Dis ; 9(5): ofac125, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35434176

RESUMEN

Norovirus infection causing acute gastroenteritis could lead to adverse effects on the gut microbiome. We assessed the association of microbiome diversity with norovirus infection and secretor status in patients from Veterans Affairs medical centers. Alpha diversity metrics were lower among patients with acute gastroenteritis but were similar for other comparisons.

20.
mSphere ; 6(1)2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504663

RESUMEN

Human noroviruses (HuNoVs) are the leading cause of epidemic and sporadic acute gastroenteritis worldwide. We previously demonstrated human intestinal stem cell-derived enteroids (HIEs) support cultivation of several HuNoV strains. However, HIEs did not support virus replication from every HuNoV-positive stool sample, which led us to test and optimize new medium conditions, identify characteristics of stool samples that allow replication, and evaluate consistency of replication over time. Optimization of our HIE-HuNoV culture system has shown the following: (i) a new HIE culture medium made with conditioned medium from a single cell line and commercial media promotes robust replication of HuNoV strains that replicated poorly in HIEs grown in our original culture medium made with conditioned media from 3 separate cell lines; (ii) GI.1, 11 GII genotypes (GII.1, GII.2, GII.3, GII.4, GII.6, GII.7, GII.8, GII.12, GII.13, GII.14, and GII.17), and six GII.4 variants can be cultivated in HIEs; (iii) successful replication is more likely with virus in stools with higher virus titers; (iv) GII.4_Sydney_2012 virus replication was reproducible over 3 years; and (v) HuNoV infection is restricted to the small intestine, based on replication of two viral strains in duodenal and ileal HIEs, but not colonoids, from two susceptible donors. These results improve the HIE culture system for HuNoV replication. Use of HIEs by several laboratories worldwide to study the molecular mechanisms that regulate HuNoV replication confirms the usefulness of this culture system, and our optimized methods for virus replication will advance the development of effective therapies and methods for virus control.IMPORTANCE Human noroviruses (HuNoVs) are highly contagious and cause acute and sporadic diarrheal illness in all age groups. In addition, chronic infections occur in immunocompromised cancer and transplant patients. These viruses are antigenically and genetically diverse, and there are strain-specific differences in binding to cellular attachment factors. In addition, new discoveries are being made on strain-specific differences in virus entry and replication and the epithelial cell response to infection in human intestinal enteroids. Human intestinal enteroids are a biologically relevant model to study HuNoVs; however, not all strains can be cultivated at this time. A complete understanding of HuNoV biology thus requires cultivation conditions that will allow the replication of multiple strains. We report optimization of HuNoV cultivation in human intestinal enteroid cultures to increase the numbers of cultivatable strains and the magnitude of replication, which is critical for testing antivirals, neutralizing antibodies, and methods of virus inactivation.


Asunto(s)
Mucosa Intestinal/virología , Norovirus/crecimiento & desarrollo , Organoides/virología , Niño , Preescolar , Medios de Cultivo , Humanos , Lactante , Mucosa Intestinal/citología , Células Madre/citología , Replicación Viral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA