Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Mater ; 23(10): 1402-1410, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39198713

RESUMEN

Novel two-dimensional semiconductor crystals can exhibit diverse physical properties beyond their inherent semiconducting attributes, making their pursuit paramount. Memristive properties, as exemplars of these attributes, are predominantly manifested in wide-bandgap materials. However, simultaneously harnessing semiconductor properties alongside memristive characteristics to produce memtransistors is challenging. Herein we prepared a class of semiconducting III-V-derived van der Waals crystals, specifically the HxA1-xBX form, exhibiting memristive characteristics. To identify candidates for the material synthesis, we conducted a systematic high-throughput screening, leading us to 44 prospective III-V candidates; of these, we successfully synthesized ten, including nitrides, phosphides, arsenides and antimonides. These materials exhibited intriguing characteristics such as electrochemical polarization and memristive phenomena while retaining their semiconductive attributes. We demonstrated the gate-tunable synaptic and logic functions within single-gate memtransistors, capitalizing on the synergistic interplay between the semiconducting and memristive properties of our two-dimensional crystals. Our approach guides the discovery of van der Waals materials with unique properties from unconventional crystal symmetries.

2.
Nano Lett ; 23(23): 11057-11065, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38048278

RESUMEN

In the realm of two-dimensional (2D) crystal growth, the chemical composition often determines the thermodynamically favored crystallographic structures. This relationship poses a challenge in synthesizing novel 2D crystals without altering their chemical elements, resulting in the rarity of achieving specific crystallographic symmetries or lattice parameters. We present 2D polymorphic FeAs crystals that completely differ from bulk orthorhombic FeAs (Pnma), differing in the stacking sequence, i.e., polytypes. Preparing polytypic FeAs outlines a strategy for independently controlling each symmetry operator, which includes the mirror plane for 2Q-FeAs (I4/mmm) and the glide plane for 1Q-FeAs (P4/nmm). As such, compared to bulk FeAs, polytypic 2D FeAs shows highly anisotropic properties such as electrical conductivity, Young's modulus, and friction coefficient. This work represents a concept of expanding 2D crystal libraries with a given chemical composition but various crystal symmetries.

3.
ACS Appl Mater Interfaces ; 16(14): 18090-18098, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38533722

RESUMEN

Multilayer coatings offer significant advantages in protecting materials' surfaces by shielding the underlying materials hierarchically from damage and wear. The layering morphology and structure of multilayer coatings directly affect their wear resistance capacity. Using a systematic set of experiments and molecular dynamics (MD) simulations, we studied the effect of layering thickness on the macroscale wear response of DLC/WC multinanolayer coatings. Our study revealed the existence of a critical bilayer thickness where maximum scratch hardness and wear resistance can be achieved. Our large-scale MD simulations showed that reducing the WC layer thickness to a certain limit increases the scratch hardness due to the confinement of dislocation motion. However, when the thickness of the WC layers falls below 2 nm, the deformation mechanism transitions from the interface-induced dislocation confinement to the interface-mediated amorphization of WC layers, reducing the scratch hardness of the coating. This finding offers a procedure for optimizing the macroscale wear performance of multinanolayer coatings.

4.
ACS Appl Mater Interfaces ; 9(35): 30149-30160, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28803468

RESUMEN

A novel functional multilayer coating with periodically stacked nanolayers of amorphous carbon (a:C)/tungsten carbide (WC) and an adhesion layer of chromium (Cr) was deposited on 304 stainless steel using a dual magnetron sputtering technique. Through process optimization, highly densified coatings with high elasticity and shear modulus, excellent wear resistance, and minimal susceptibility to corrosive and caustic media could be acquired. The structural and mechanical properties of the optimized coatings were studied in detail using a variety of analytical techniques. Furthermore, finite element method simulations indicated that the stress generated due to contact against a steel ball was distributed well within the coating, which allowed the stresses to be lower than the yield threshold of the coating. Thus, an ultralow wear rate of ∼10-12mm3/N mm could be achieved in dry sliding conditions under relatively high Hertzian contact pressures of ∼0.4-0.9 GPa. The amorphous and pinhole-free structure of the individual layers, sufficient number of pairs, and the relatively dense stacked layers resulted in significant polarization resistance (Z″ = 5.5 × 106 Ω cm2) and increased the corrosion resistance of the coating by 10-fold compared to that of recently reported corrosion-resistant coatings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA