Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Mol Psychiatry ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052983

RESUMEN

Oxytocin plays an important role in modulating social recognition memory. However, the direct implication of oxytocin neurons of the paraventricular nucleus of the hypothalamus (PVH) and their downstream hypothalamic targets in regulating short- and long-term forms of social recognition memory has not been fully investigated. In this study, we employed a chemogenetic approach to target the activity of PVH oxytocin neurons in male rats and found that specific silencing of this neuronal population led to an impairment in short- and long-term social recognition memory. We combined viral-mediated fluorescent labeling of oxytocin neurons with immunohistochemical techniques and identified the supramammillary nucleus (SuM) of the hypothalamus as a target of PVH oxytocinergic axonal projections in rats. We used multiplex fluorescence in situ hybridization to label oxytocin receptors in the SuM and determined that they are predominantly expressed in glutamatergic neurons, including those that project to the CA2 region of the hippocampus. Finally, we used a highly selective oxytocin receptor antagonist in the SuM to examine the involvement of oxytocin signaling in modulating short- and long-term social recognition memory and found that it is necessary for the formation of both. This study discovered a previously undescribed role for the SuM in regulating social recognition memory via oxytocin signaling and reinforced the specific role of PVH oxytocin neurons in regulating this form of memory.

2.
BMC Biol ; 20(1): 159, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35820848

RESUMEN

BACKGROUND: Various mammalian species emit ultrasonic vocalizations (USVs), which reflect their emotional state and mediate social interactions. USVs are usually analyzed by manual or semi-automated methodologies that categorize discrete USVs according to their structure in the frequency-time domains. This laborious analysis hinders the effective use of USVs as a readout for high-throughput analysis of behavioral changes in animals. RESULTS: Here we present a novel automated open-source tool that utilizes a different approach towards USV analysis, termed TrackUSF. To validate TrackUSF, we analyzed calls from different animal species, namely mice, rats, and bats, recorded in various settings and compared the results with a manual analysis by a trained observer. We found that TrackUSF detected the majority of USVs, with less than 1% of false-positive detections. We then employed TrackUSF to analyze social vocalizations in Shank3-deficient rats, a rat model of autism, and revealed that these vocalizations exhibit a spectrum of deviations from appetitive calls towards aversive calls. CONCLUSIONS: TrackUSF is a simple and easy-to-use system that may be used for a high-throughput comparison of ultrasonic vocalizations between groups of animals of any kind in any setting, with no prior assumptions.


Asunto(s)
Trastorno Autístico , Ultrasonido , Animales , Emociones , Mamíferos , Ratones , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso , Ratas , Vocalización Animal
3.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835332

RESUMEN

Purposeful induction of fever for healing, including the treatment of epilepsy, was used over 2000 years ago by Hippocrates. More recently, fever has been demonstrated to rescue behavioral abnormalities in children with autism. However, the mechanism of fever benefit has remained elusive due in large part to the lack of appropriate human disease models recapitulating the fever effect. Pathological mutations in the IQSEC2 gene are frequently seen in children presenting with intellectual disability, autism and epilepsy. We recently described a murine A350V IQSEC2 disease model, which recapitulates important aspects of the human A350V IQSEC2 disease phenotype and the favorable response to a prolonged and sustained rise in body core temperature in a child with the mutation. Our goal has been to use this system to understand the mechanism of fever benefit and then develop drugs that can mimic this effect and reduce IQSEC2-associated morbidity. In this study, we first demonstrate a reduction in seizures in the mouse model following brief periods of heat therapy, similar to what was observed in a child with the mutation. We then show that brief heat therapy is associated with the correction of synaptic dysfunction in neuronal cultures of A350V mice, likely mediated by Arf6-GTP.


Asunto(s)
Epilepsia , Factores de Intercambio de Guanina Nucleótido , Hipertermia Inducida , Proteínas del Tejido Nervioso , Convulsiones , Animales , Niño , Humanos , Ratones , Epilepsia/terapia , Factores de Intercambio de Guanina Nucleótido/genética , Calor , Discapacidad Intelectual/genética , Mutación , Proteínas del Tejido Nervioso/genética , Receptores AMPA/genética , Convulsiones/terapia
4.
Int J Hyperthermia ; 38(1): 1495-1501, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34666607

RESUMEN

OBJECTIVES: Mutations in the human IQSEC2 gene are associated with drug-resistant epilepsy and severe behavioral dysfunction. We have focused on understanding one human IQSEC2 missense mutation (A350V) for which we have created a corresponding A350V IQSEC2 mouse model by CRISPR which demonstrates seizures when the mice are 15-20 days old and impaired social vocalizations in adulthood. We observed that a child with the A350V mutation stops having seizures when experiencing a fever of greater than 38 °C. In this study, we first sought to determine if we could recapitulate this phenomenon in A350V 15-20 day old mice using a previously established protocol to raise body temperature to 39 °C achieved by housing the mice at 37 °C. We then sought to determine if mice in whom seizure activity had been prevented as pups would develop social vocalization activity in adulthood. METHODS: 15-20 day old A350V male mice were housed either at 37 °C or 22 °C. Ultrasonic vocalizations of these mice were assessed at 8-10 weeks in response to a female stimulus. RESULTS: Housing of 15-20 day old A350V mice at 37 °C resulted in a reduction in lethal seizures to 2% (1/41) compared to 45% (48/108) in mice housed at 22 °C, p = 0.0001. Adult A350V mice who had been housed at 37 °C as pups displayed a significant improvement in the production of social vocalizations. CONCLUSION: Raising the body temperature by raising the ambient temperature might provide a means to reduce seizures associated with the A350V IQSEC2 mutation and thereby allow for an improved neurodevelopmental trajectory.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Convulsiones/prevención & control , Temperatura , Vocalización Animal , Animales , Femenino , Factores de Intercambio de Guanina Nucleótido/genética , Vivienda , Masculino , Ratones , Proteínas del Tejido Nervioso
5.
J Neurophysiol ; 111(5): 918-29, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24304859

RESUMEN

The selection of the appropriate stimulus to induce an orienting response is a basic task thought to be partly achieved by tectal circuitry. Here we addressed the relationship between neural activity in the optic tectum (OT) and orienting behavioral responses. We recorded multiunit activity in the intermediate/deep layers of the OT of the barn owl simultaneously with pupil dilation responses (PDR, a well-known orienting response common to birds and mammals). A trial-by-trial analysis of the responses revealed that the PDR generally did not correlate with the evoked neural responses but significantly correlated with the rate of ongoing neural activity measured shortly before the stimulus. Following this finding, we characterized ongoing activity in the OT and showed that in the intermediate/deep layers it tended to fluctuate spontaneously. It is characterized by short periods of high ongoing activity during which the probability of a PDR to an auditory stimulus inside the receptive field is increased. These high-ongoing activity periods were correlated with increase in the power of gamma band local field potential oscillations. Through dual recordings, we showed that the correlation coefficients of ongoing activity decreased as a function of distance between recording sites in the tectal map. Significant correlations were also found between recording sites in the OT and the forebrain entopallium. Our results suggest that an increase of ongoing activity in the OT reflects an internal state during which coupling between sensory stimulation and behavioral responses increases.


Asunto(s)
Neuronas/fisiología , Pupila/fisiología , Colículos Superiores/fisiología , Estimulación Acústica , Animales , Estrigiformes
6.
Commun Biol ; 7(1): 2, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168971

RESUMEN

Mammalian social behavior is highly context-sensitive. Yet, little is known about the mechanisms that modulate social behavior according to its context. Recent studies have revealed a network of mostly limbic brain regions which regulates social behavior. We hypothesize that coherent theta and gamma rhythms reflect the organization of this network into functional sub-networks in a context-dependent manner. To test this concept, we simultaneously record local field potential (LFP) from multiple social brain regions in adult male mice performing three social discrimination tasks. While LFP rhythmicity across all tasks is dominated by a global internal state, the pattern of theta coherence between the various regions reflect the behavioral task more than other variables. Moreover, Granger causality analysis implicate the ventral dentate gyrus as a main player in coordinating the context-specific rhythmic activity. Thus, our results suggest that the pattern of coordinated rhythmic activity within the network reflects the subject's social context.


Asunto(s)
Ritmo Gamma , Ritmo Teta , Masculino , Ratones , Animales , Ritmo Teta/fisiología , Encéfalo/fisiología , Conducta Social , Mamíferos
7.
bioRxiv ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38106179

RESUMEN

Social behaviors are crucial for human connection and belonging, often impacted in conditions like Autism Spectrum Disorder (ASD). The mesoaccumbens pathway (VTA and NAc) plays a pivotal role in social behavior and is implicated in ASD. However, the impact of ASD-related mutations on social reward processing remains insufficiently explored. This study focuses on the Shank3 mutation, associated with a rare genetic condition and linked to ASD, examining its influence on the mesoaccumbens pathway during behavior, using the Shank3-deficient rat model. Our findings indicate that Shank3-deficient rats exhibit atypical social interactions and have difficulty adjusting behavior based on reward values, associated with modified neuronal activity of VTA dopaminergic and GABAergic neurons and reduced dopamine release in the NAc. Moreover, we demonstrate that manipulating VTA neuronal activity can normalize this behavior, providing insights into the effects of Shank3 mutations on social reward and behavior, and identify a potential neural pathway for intervention.

8.
iScience ; 26(2): 105921, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36685037

RESUMEN

Social interactions involve both approach and avoidance toward specific individuals. Currently, the brain regions subserving these behaviors are not fully recognized. The anterior hypothalamic nucleus (AHN) is a poorly defined brain area, and recent studies have yielded contradicting conclusions regarding its behavioral role. Here we explored the role of AHN neuronal activity in regulating approach and avoidance actions during social interactions. Using electrophysiological recordings from behaving mice, we revealed that theta rhythmicity in the AHN is enhanced during affiliative interactions, but decreases during aversive ones. Moreover, the spiking activity of AHN neurons increased during the investigation of social stimuli, as compared to objects, and was modulated by theta rhythmicity. Finally, AHN optogenetic stimulation during social interactions augmented the approach toward stimuli associated with the stimulation. These results suggest the role for AHN neural activity in regulating approach behavior during social interactions, and for theta rhythmicity in mediating the valence of social stimuli.

9.
Cell Rep Methods ; 3(11): 100638, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37939710

RESUMEN

Vocalizations are pivotal in mammalian communication, especially in humans. Rodents accordingly rely on ultrasonic vocalizations (USVs) that reflect their internal state as a primary channel during social interactions. However, attributing vocalizations to specific individuals remains challenging, impeding internal state assessment. Rats emit 50-kHz USVs to indicate positive states and intensify sniffing during alertness and social interactions. Here, we present a method involving a miniature microphone attached to the rat nasal cavity that allows to capture both male and female individual rat vocalizations and sniffing patterns during social interactions. We found that while the emission of 50-kHz USVs increases during close interactions, these signals lack specific behavioral associations. Moreover, a previously unreported low-frequency vocalization type marking rat social interactions was uncovered. Finally, different dynamics of sniffing and vocalization activities point to distinct underlying internal states. Thus, our method facilitates the exploration of internal states concurrent with social behaviors.


Asunto(s)
Ultrasonido , Vocalización Animal , Humanos , Ratas , Animales , Masculino , Femenino , Conducta Social , Interacción Social , Mamíferos
10.
Nat Neurosci ; 26(12): 2237-2249, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37884748

RESUMEN

The amygdala is a brain region primarily associated with emotional response. The use of genetic markers and single-cell transcriptomics can provide insights into behavior-associated cell state changes. Here we present a detailed cell-type taxonomy of the adult mouse amygdala during fear learning and memory consolidation. We perform single-cell RNA sequencing on naïve and fear-conditioned mice, identify 130 neuronal cell types and validate their spatial distributions. A subset of all neuronal types is transcriptionally responsive to fear learning and memory retrieval. The activated engram cells upregulate activity-response genes and coordinate the expression of genes associated with neurite outgrowth, synaptic signaling, plasticity and development. We identify known and previously undescribed candidate genes responsive to fear learning. Our molecular atlas may be used to generate hypotheses to unveil the neuron types and neural circuits regulating the emotional component of learning and memory.


Asunto(s)
Amígdala del Cerebelo , Plasticidad Neuronal , Ratones , Animales , Plasticidad Neuronal/genética , Amígdala del Cerebelo/fisiología , Miedo/fisiología , Neuronas/fisiología , Memoria/fisiología
11.
J Neurosci ; 31(49): 17811-20, 2011 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-22159097

RESUMEN

Habituation is the most basic form of learning, yet many gaps remain in our understanding of its underlying neural mechanisms. We demonstrate that in the owl's optic tectum (OT), a single, low-level, relatively short auditory stimulus is sufficient to induce a significant reduction in the neural response to a stimulus presented up to 60 s later. This type of neural adaptation was absent in neurons from the central nucleus of the inferior colliculus and from the auditory thalamus; however, it was apparent in the OT and the forebrain entopallium. By presenting sequences that alternate between two different auditory stimuli, we show that this long-lasting adaptation is stimulus specific. The response to an odd stimulus in the sequence was not smaller than the response to the same stimulus when it was first in the sequence. Finally, we measured the habituation of reflexive eye movements and show that the behavioral habituation is correlated with the neural adaptation. The finding of a long-lasting specific adaptation in areas related to the gaze control system and not elsewhere suggests its involvement in habituation processes and opens new directions for research on mechanisms of habituation.


Asunto(s)
Adaptación Fisiológica/fisiología , Habituación Psicofisiológica/fisiología , Neuronas/fisiología , Estimulación Acústica , Potenciales de Acción/fisiología , Animales , Conducta Animal , Movimientos Oculares/fisiología , Femenino , Masculino , Orientación , Psicoacústica , Espectrografía del Sonido , Estrigiformes , Colículos Superiores/citología , Factores de Tiempo
12.
Curr Protoc ; 2(5): e399, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35536117

RESUMEN

Multi-site extracellular recordings from awake, freely moving rodents are an insightful technique that allows deduction of the dynamics of neural activity within a network of brain regions. Multiple advances in the design and materials of recording setups are available in the literature. However, most of these designs require several skill sets to assemble the electrodes and are expensive. Here, we explain in detail a custom design to build a multi-site (16 sites) electrode array (EA) and record extracellular electrical signals (local field potential and multi-unit spiking activity) at variable depths in freely behaving rodents. This EA weighs ∼3.0 g and costs less than $30. It provides mesoscopic neural activity maps (at millimeter scale) at low spatial resolution, thus enabling the experimenting group to further target specific regions with more expensive high-density probes at the resolution of an individual neuron. The article outlines the processes of building and implanting the array and recording neural activity during a behavior task. We also highlight the limitations of our design and the necessary steps to troubleshoot common issues faced during the initial implementation of the protocols. Finally, we explain the specific data one would obtain while using the probes during social interactions between rodents. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation of the electrode array Basic Protocol 2: Surgical implantation of the electrode array Basic Protocol 3: Recording of neural activity from the electrode array while a mouse performs social investigation of a novel conspecific Basic Protocol 4: Histology and electrode registration.


Asunto(s)
Encéfalo , Roedores , Animales , Encéfalo/fisiología , Electrodos Implantados , Ratones , Neuronas/fisiología
13.
iScience ; 25(2): 103735, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35098101

RESUMEN

The survival of individuals of gregarious species depends on their social interactions. In humans, atypical social behavior is a hallmark of several psychopathological conditions, many of which have sex-specific manifestations. Various laboratory mouse strains are used to reveal the mechanisms mediating typical and atypical social behavior in mammals. Here, we used three social discrimination tests to characterize social behavior in males and females of three widely used laboratory mouse strains (C57BL/6J, BALB/c, and ICR). We found marked sex- and strain-specific differences in the behavior exhibited by subjects, in a test-dependent manner. Interestingly, some characteristics were strain-dependent, while others were sex-dependent. We then crossbred C57BL/6J and BALB/c mice and found that offspring of such crossbreeding exhibit social behavior which differs from both parental strains and depends on the specific combination of parental strains. Thus, social behavior of laboratory mice is sex- and strain-specific and depends on both genetic and environmental factors.

14.
Mol Autism ; 13(1): 41, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36284353

RESUMEN

MAIN: In recent years, substantial advances in social neuroscience have been realized, including the generation of numerous rodent models of autism spectrum disorder. Still, it can be argued that those methods currently being used to analyze animal social behavior create a bottleneck that significantly slows down progress in this field. Indeed, the bulk of research still relies on a small number of simple behavioral paradigms, the results of which are assessed without considering behavioral dynamics. Moreover, only few variables are examined in each paradigm, thus overlooking a significant portion of the complexity that characterizes social interaction between two conspecifics, subsequently hindering our understanding of the neural mechanisms governing different aspects of social behavior. We further demonstrate these constraints by discussing the most commonly used paradigm for assessing rodent social behavior, the three-chamber test. We also point to the fact that although emotions greatly influence human social behavior, we lack reliable means for assessing the emotional state of animals during social tasks. As such, we also discuss current evidence supporting the existence of pro-social emotions and emotional cognition in animal models. We further suggest that adequate social behavior analysis requires a novel multimodal approach that employs automated and simultaneous measurements of multiple behavioral and physiological variables at high temporal resolution in socially interacting animals. We accordingly describe several computerized systems and computational tools for acquiring and analyzing such measurements. Finally, we address several behavioral and physiological variables that can be used to assess socio-emotional states in animal models and thus elucidate intricacies of social behavior so as to attain deeper insight into the brain mechanisms that mediate such behaviors. CONCLUSIONS: In summary, we suggest that combining automated multimodal measurements with machine-learning algorithms will help define socio-emotional states and determine their dynamics during various types of social tasks, thus enabling a more thorough understanding of the complexity of social behavior.


Asunto(s)
Trastorno del Espectro Autista , Roedores , Animales , Humanos , Conducta Social , Conducta Animal , Emociones
15.
Neuroscience ; 493: 69-80, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35490969

RESUMEN

The medial nucleus of the amygdala (MeA) is known to regulate social behavior. This brain area is functionally positioned in a crossroads between sensory information processing and behavioral modulation. On the one hand, it receives direct chemosensory input from the accessory olfactory bulb. On the other hand, it orchestrates various behavioral outputs via brain-wide projections under the regulation of multiple neuromodulatory systems. Previously, we showed that adult male Sprague Dawley (SD) rats and C57BL/6J mice, the most widely used rodent models in neuroscience research, differ in their dynamics of motivation to interact with a novel same-sex conspecific and that this difference correlates with the level of c-Fos expression in the MeA. Here we used chronically implanted electrodes to compare rhythmic local field potential signals recorded from these animals during free and restricted social interactions. We found a significant induction of rhythmicity in the theta (4-12 Hz) and gamma (30-80 Hz) bands during both free and restricted social interaction in both rats and mice. However, the induction of gamma rhythmicity, thought to reflect activity of local neuronal networks, was significantly higher in rats than mice. Nevertheless, in contrast to rats, mice exhibited induction of rhythmicity, in both the theta and gamma bands, in synchrony with investigation of social, but not object stimuli. These results suggest that during interaction with a novel same-sex conspecific, the MeA of C57BL/6J mice is mostly involved in sensory information processing while in SD rats it is mainly active in modulating the social motivation state of the animal.


Asunto(s)
Amígdala del Cerebelo , Interacción Social , Amígdala del Cerebelo/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Periodicidad , Ratas , Ratas Sprague-Dawley
16.
Psychoneuroendocrinology ; 143: 105859, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35816892

RESUMEN

In humans, discrimination between individuals, also termed social recognition, can rely on a single sensory modality, such as vision. By analogy, social recognition in rodents is thought to be based upon olfaction. Here, we hypothesized that social recognition in rodents relies upon integration of olfactory, auditory and somatosensory cues, hence requiring active behavior of social stimuli. Using distinct social recognition tests, we demonstrated that adult male mice do not exhibit recognition of familiar stimuli or learn the identity of novel stimuli that are inactive due to anesthesia. We further revealed that impairing the olfactory, somatosensory or auditory systems prevents behavioral recognition of familiar stimuli. Finally, we found that familiar and novel stimuli generate distinct movement patterns during social discrimination and that subjects react differentially to the movement of these stimuli. Thus, unlike what occurs in humans, social recognition in mice relies on integration of information from several sensory modalities.


Asunto(s)
Señales (Psicología) , Olfato , Adulto , Animales , Humanos , Masculino , Ratones , Reconocimiento en Psicología
17.
J Neurosci ; 30(20): 6991-8, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20484641

RESUMEN

Neural adaptation and visual auditory integration are two well studied and common phenomena in the brain, yet little is known about the interaction between them. In the present study, we investigated a visual forebrain area in barn owls, the entopallium (E), which has been shown recently to encompass auditory responses as well. Responses of neurons to sequences of visual, auditory, and bimodal (visual and auditory together) events were analyzed. Sequences comprised two stimuli, one with a low probability of occurrence and the other with a high probability. Neurons in the E tended to respond more strongly to low probability visual stimuli than to high probability stimuli. Such a phenomenon is known as stimulus-specific adaptation (SSA) and is considered to be a neural correlate of change detection. Responses to the corresponding auditory sequences did not reveal an equivalent tendency. Interestingly, however, SSA to bimodal events was stronger than to visual events alone. This enhancement was apparent when the visual and auditory stimuli were presented from matching locations in space (congruent) but not when the bimodal stimuli were spatially incongruent. These findings suggest that the ongoing task of detecting unexpected events can benefit from the integration of visual and auditory information.


Asunto(s)
Adaptación Fisiológica/fisiología , Percepción Auditiva/fisiología , Prosencéfalo/fisiología , Estrigiformes/fisiología , Percepción Visual/fisiología , Estimulación Acústica/métodos , Animales , Modelos Biológicos , Pruebas Neuropsicológicas , Estimulación Luminosa/métodos , Psicofísica , Percepción Espacial/fisiología
18.
Front Behav Neurosci ; 15: 810590, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35145383

RESUMEN

Mice use ultrasonic vocalizations (USVs) to convey a variety of socially relevant information. These vocalizations are affected by the sex, age, strain, and emotional state of the emitter and can thus be used to characterize it. Current tools used to detect and analyze murine USVs rely on user input and image processing algorithms to identify USVs, therefore requiring ideal recording environments. More recent tools which utilize convolutional neural networks models to identify vocalization segments perform well above the latter but do not exploit the sequential structure of audio vocalizations. On the other hand, human voice recognition models were made explicitly for audio processing; they incorporate the advantages of CNN models in recurrent models that allow them to capture the sequential nature of the audio. Here we describe the HybridMouse software: an audio analysis tool that combines convolutional (CNN) and recurrent (RNN) neural networks for automatically identifying, labeling, and extracting recorded USVs. Following training on manually labeled audio files recorded in various experimental conditions, HybridMouse outperformed the most commonly used benchmark model utilizing deep-learning tools in accuracy and precision. Moreover, it does not require user input and produces reliable detection and analysis of USVs recorded under harsh experimental conditions. We suggest that HybrideMouse will enhance the analysis of murine USVs and facilitate their use in scientific research.

19.
Transl Psychiatry ; 11(1): 234, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888678

RESUMEN

In this study we tested the hypothesis that pharmacological modulation of glutamatergic neurotransmission could rescue behavioral deficits exhibited by mice carrying a specific mutation in the Iqsec2 gene. The IQSEC2 protein plays a key role in glutamatergic synapses and mutations in the IQSEC2 gene are a frequent cause of neurodevelopmental disorders. We have recently reported on the molecular pathophysiology of one such mutation A350V and demonstrated that this mutation downregulates AMPA type glutamatergic receptors (AMPAR) in A350V mice. Here we sought to identify behavioral deficits in A350V mice and hypothesized that we could rescue these deficits by PF-4778574, a positive AMPAR modulator. Using a battery of social behavioral tasks, we found that A350V Iqsec2 mice exhibit specific deficits in sex preference and emotional state preference behaviors as well as in vocalizations when encountering a female mouse. The social discrimination deficits, but not the impaired vocalization, were rescued with a single dose of PF-4778574. We conclude that social behavior deficits associated with the A350V Iqsec2 mutation may be rescued by enhancing AMPAR mediated synaptic transmission.


Asunto(s)
Receptores AMPA , Conducta Social , Animales , Femenino , Factores de Intercambio de Guanina Nucleótido/genética , Ratones , Mutación , Proteínas del Tejido Nervioso/genética , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA