Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(11): e2307813120, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437570

RESUMEN

Lipid nanoparticles (LNPs) largely rely on ionizable lipids to yield successful nucleic acid delivery via electrostatic disruption of the endosomal membrane. Here, we report the identification and evaluation of ionizable lipids containing a thiophene moiety (Thio-lipids). The Thio-lipids can be readily synthesized via the Gewald reaction, allowing for modular lipid design with functional constituents at various positions of the thiophene ring. Through the rational design of ionizable lipid structure, we prepared 47 Thio-lipids and identified some structural criteria required in Thio-lipids for efficient mRNA (messenger RNA) encapsulation and delivery in vitro and in vivo. Notably, none of the tested lipids have a pH-response profile like traditional ionizable lipids, potentially due to the electron delocalization in the thiophene core. Placement of the tails and localization of the ionizable headgroup in the thiophene core can endow the nanoparticles with the capability to reach various tissues. Using high-throughput formulation and barcoding techniques, we optimized the formulations to select two top lipids-20b and 29d-and investigated their biodistribution in mice. Lipid 20b enabled LNPs to transfect the liver and spleen, and 29d LNP transfected the lung and spleen. Unexpectedly, LNP with lipid 20b was especially potent in mRNA delivery to the retina with no acute toxicity, leading to the successful delivery to the photoreceptors and retinal pigment epithelium in non-human primates.


Asunto(s)
Pulmón , Retina , Animales , Ratones , Distribución Tisular , ARN Mensajero/genética , Lípidos
2.
Angiogenesis ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38498232

RESUMEN

Age-related macular degeneration (AMD) is a common retinal neurodegenerative disease among the elderly. Neovascular AMD (nAMD), a leading cause of AMD-related blindness, involves choroidal neovascularization (CNV), which can be suppressed by anti-angiogenic treatments. However, current CNV treatments do not work in all nAMD patients. Here we investigate a novel target for AMD. Granzyme B (GzmB) is a serine protease that promotes aging, chronic inflammation and vascular permeability through the degradation of the extracellular matrix (ECM) and tight junctions. Extracellular GzmB is increased in retina pigment epithelium (RPE) and mast cells in the choroid of the healthy aging outer retina. It is further increased in donor eyes exhibiting features of nAMD and CNV. Here, we show in RPE-choroidal explant cultures that exogenous GzmB degrades the RPE-choroid ECM, promotes retinal/choroidal inflammation and angiogenesis while diminishing anti-angiogenic factor, thrombospondin-1 (TSP-1). The pharmacological inhibition of either GzmB or mast-cell degranulation significantly reduces choroidal angiogenesis. In line with our in vitro data, GzmB-deficiency reduces the extent of laser-induced CNV lesions and the age-related deterioration of electroretinogram (ERG) responses in mice. These findings suggest that targeting GzmB, a serine protease with no known endogenous inhibitors, may be a potential novel therapeutic approach to suppress CNV in nAMD.

3.
Small ; : e2400815, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738752

RESUMEN

Complete encapsulation of nucleic acids by lipid-based nanoparticles (LNPs) is often thought to be one of the main prerequisites for successful nucleic acid delivery, as the lipid environment protects mRNA from degradation by external nucleases and assists in initiating delivery processes. However, delivery of mRNA via a preformed vesicle approach (PFV-LNPs) defies this precondition. Unlike traditional LNPs, PFV-LNPs are formed via a solvent-free mixing process, leading to a superficial mRNA localization. While demonstrating low encapsulation efficiency in the RiboGreen assay, PFV-LNPs improved delivery of mRNA to the retina by up to 50% compared to the LNP analogs across several benchmark formulations, suggesting the utility of this approach regardless of the lipid composition. Successful mRNA and gene editors' delivery is observed in the retinal pigment epithelium and photoreceptors and validated in mice, non-human primates, and human retinal organoids. Deploying PFV-LNPs in gene editing experiments result in a similar extent of gene editing compared to analogous LNP (up to 3% on genomic level) in the Ai9 reporter mouse model; but, remarkably, retinal tolerability is significantly improved for PFV-LNP treatment. The study findings indicate that the LNP formulation process can greatly influence mRNA transfection and gene editing outcomes, improving LNP treatment safety without sacrificing efficacy.

4.
Am J Pathol ; 193(11): 1789-1808, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36965774

RESUMEN

This study investigated retinal changes in a Western diet (WD)-induced nonhuman primate model of type 2 diabetes. Rhesus nonhuman primates, aged 15 to 17 years, were fed a high-fat diet (n = 7) for >5 years reflective of the traditional WD. Age-matched controls (n = 6) were fed a standard laboratory primate diet. Retinal fundus photography, optical coherence tomography, autofluorescence imaging, and fluorescein angiography were performed before euthanasia. To assess diabetic retinopathy (DR), eyes were examined using trypsin digests, lipofuscin autofluorescence, and multimarker immunofluorescence on cross-sections and whole mounts. Retinal imaging showed venous engorgement and tortuosity, aneurysms, macular exudates, dot and blot hemorrhages, and a marked increase in fundus autofluorescence. Post-mortem changes included the following: decreased CD31 blood vessel density (P < 0.05); increased acellular capillaries (P < 0.05); increased density of ionized calcium-binding adaptor molecule expressing amoeboid microglia/macrophage; loss of regular distribution in stratum and spacing typical of ramified microglia; and increased immunoreactivity of aquaporin 4 and glial fibrillary acidic protein (P < 0.05). However, rhodopsin immunoreactivity (P < 0.05) in rods and neuronal nuclei antibody-positive neuronal density of 50% (P < 0.05) were decreased. This is the first report of a primate model of DR solely induced by a WD that replicates key features of human DR.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Animales , Humanos , Retinopatía Diabética/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Dieta Occidental , Vasos Retinianos/metabolismo , Primates , Tomografía de Coherencia Óptica/métodos
5.
Mol Ther ; 31(7): 2028-2041, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37056049

RESUMEN

In this study, we investigate a gene augmentation therapy candidate for the treatment of retinitis pigmentosa (RP) due to cyclic nucleotide-gated channel beta 1 (CNGB1) mutations. We use an adeno-associated virus serotype 5 with transgene under control of a novel short human rhodopsin promoter. The promoter/capsid combination drives efficient expression of a reporter gene (AAV5-RHO-eGFP) exclusively in rod photoreceptors in primate, dog, and mouse following subretinal delivery. The therapeutic vector (AAV5-RHO-CNGB1) delivered to the subretinal space of CNGB1 mutant dogs restores rod-mediated retinal function (electroretinographic responses and vision) for at least 12 months post treatment. Immunohistochemistry shows human CNGB1 is expressed in rod photoreceptors in the treated regions as well as restoration of expression and trafficking of the endogenous alpha subunit of the rod CNG channel required for normal channel formation. The treatment reverses abnormal accumulation of the second messenger, cyclic guanosine monophosphate, which occurs in rod photoreceptors of CNGB1 mutant dogs, confirming formation of a functional CNG channel. In vivo imaging shows long-term preservation of retinal structure. In conclusion, this study establishes the long-term efficacy of subretinal delivery of AAV5-RHO-CNGB1 to rescue the disease phenotype in a canine model of CNGB1-RP, confirming its suitability for future clinical development.


Asunto(s)
Parvovirinae , Retinitis Pigmentosa , Humanos , Animales , Perros , Ratones , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Retinitis Pigmentosa/metabolismo , Retina/metabolismo , Electrorretinografía , Rodopsina/metabolismo
6.
J Pathol ; 257(3): 314-326, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35239183

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of blindness in the aging population. Yet no therapies exist for ~85% of all AMD patients who have the dry form that is marked by degeneration of the retinal pigmented epithelium (RPE) and underlying choroidal vasculature. As the choroidal vessels are crucial for RPE development and maintenance, understanding how they degenerate may lead to effective therapies for dry AMD. One likely causative factor for choroidal vascular loss is the cytolytic membrane attack complex (MAC) of the complement pathway that is abundant on choroidal vessels of humans with early dry AMD. To examine this possibility, we studied the effect of complement activation on choroidal endothelial cells (ECs) isolated from a rhesus monkey model of early AMD that, we report, exhibits MAC deposition and choriocapillaris endothelial loss similar to that seen in human early AMD. Treatment of choroidal ECs from AMD eyes with complement-competent normal human serum caused extensive actin cytoskeletal injury that was significantly less pronounced in choroidal ECs from young normal monkey eyes. We further show that ECs from AMD eyes are significantly stiffer than their younger counterparts and exhibit peripheral actin organization that is distinct from the longitudinal stress fibers in young ECs. Finally, these differences in complement susceptibility and mechanostructural properties were found to be regulated by the differential activity of the small GTPases Rac and Rho, because Rac inhibition in AMD cells led to simultaneous reduction in stiffness and complement susceptibility, while Rho inhibition in young cells exacerbated complement injury. Thus, by identifying cell stiffness and cytoskeletal regulators Rac and Rho as important determinants of complement susceptibility, the current findings offer a new mechanistic insight into choroidal vascular loss in early AMD that warrants further investigation for assessment of translational potential. © 2022 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Células Endoteliales , Degeneración Macular , Actinas/metabolismo , Anciano , Coroides/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Células Endoteliales/metabolismo , Humanos , Degeneración Macular/patología
7.
Br J Anaesth ; 131(6): 1030-1042, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37714750

RESUMEN

BACKGROUND: Clinical studies suggest that anaesthesia exposure early in life affects neurobehavioural development. We designed a non-human primate (NHP) study to evaluate cognitive, behavioural, and brain functional and structural alterations after isoflurane exposure during infancy. These NHPs displayed decreased close social behaviour and increased astrogliosis in specific brain regions, most notably in the amygdala. Here we hypothesise that resting-state functional connectivity MRI can detect alterations in connectivity of brain areas that relate to these social behaviours and astrogliosis. METHODS: Imaging was performed in 2-yr-old NHPs under light anaesthesia, after early-in-life (postnatal days 6-12) exposure to 5 h of isoflurane either one or three times, or to room air. Brain images were segmented into 82 regions of interest; the amygdala and the posterior cingulate cortex were chosen for a seed-based resting-state functional connectivity MRI analysis. RESULTS: We found differences between groups in resting-state functional connectivity of the amygdala and the auditory cortices, medial premotor cortex, and posterior cingulate cortex. There were also alterations in resting-state functional connectivity between the posterior cingulate cortex and secondary auditory, polar prefrontal, and temporal cortices, and the anterior insula. Relationships were identified between resting-state functional connectivity alterations and the decrease in close social behaviour and increased astrogliosis. CONCLUSIONS: Early-in-life anaesthesia exposure in NHPs is associated with resting-state functional connectivity alterations of the amygdala and the posterior cingulate cortex with other brain regions, evident at the juvenile age of 2 yr. These changes in resting-state functional connectivity correlate with the decrease in close social behaviour and increased astrogliosis. Using resting-state functional connectivity MRI to study the neuronal underpinnings of early-in-life anaesthesia-induced behavioural alterations could facilitate development of a biomarker for anaesthesia-induced developmental neurotoxicity.


Asunto(s)
Isoflurano , Animales , Isoflurano/efectos adversos , Gliosis , Encéfalo/diagnóstico por imagen , Giro del Cíngulo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Primates , Mapeo Encefálico/métodos , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología
8.
Br J Anaesth ; 126(2): 486-499, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33198945

RESUMEN

BACKGROUND: Clinical studies show that children exposed to anaesthetics for short times at young age perform normally on intelligence tests, but display altered social behaviours. In non-human primates (NHPs), infant anaesthesia exposure for several hours causes neurobehavioural impairments, including delayed motor reflex development and increased anxiety-related behaviours assessed by provoked response testing. However, the effects of anaesthesia on spontaneous social behaviours in juvenile NHPs have not been investigated. We hypothesised that multiple, but not single, 5 h isoflurane exposures in infant NHPs are associated with impairments in specific cognitive domains and altered social behaviours at juvenile age. METHODS: Eight Rhesus macaques per group were anaesthetised for 5 h using isoflurane one (1×) or three (3×) times between postnatal days 6 and 12 or were exposed to room air (control). Cognitive testing, behavioural assessments in the home environment, and provoked response testing were performed during the first 2 yr of life. RESULTS: The cognitive functions tested did not differ amongst groups. However, compared to controls, NHPs in the 3× group showed less close social behaviour (P=0.016), and NHPs in the 1× group displayed increased anxiety-related behaviours (P=0.038) and were more inhibited towards novel objects (P<0.001). CONCLUSIONS: 5 h exposures of NHPs to isoflurane during infancy are associated with decreased close social behaviour after multiple exposures and more anxiety-related behaviours and increased behavioural inhibition after single exposure, but they do not affect the cognitive domains tested. Our findings are consistent with behavioural alterations in social settings reported in clinical studies, which may guide future research.


Asunto(s)
Anestésicos por Inhalación/toxicidad , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Cognición/efectos de los fármacos , Isoflurano/toxicidad , Síndromes de Neurotoxicidad/etiología , Conducta Social , Factores de Edad , Anestésicos por Inhalación/administración & dosificación , Animales , Animales Recién Nacidos , Ansiedad/inducido químicamente , Ansiedad/fisiopatología , Ansiedad/psicología , Encéfalo/fisiopatología , Esquema de Medicación , Conducta Exploratoria/efectos de los fármacos , Femenino , Isoflurano/administración & dosificación , Macaca mulatta , Masculino , Actividad Motora/efectos de los fármacos , Síndromes de Neurotoxicidad/fisiopatología , Síndromes de Neurotoxicidad/psicología , Tiempo de Reacción/efectos de los fármacos , Factores de Tiempo
9.
J Nutr ; 150(9): 2305-2313, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32614402

RESUMEN

BACKGROUND: α-Tocopherol (αT) in its natural form [2'R, 4'R, 8'R αT (RRR-αT)] is more bioactive than synthetic α-tocopherol (all rac-αT). All rac-αT is widely used in infant formulas, but its accretion in formula-fed infant brain is unknown. OBJECTIVE: We sought to compare αT and stereoisomer status in infant rhesus macaques (Macaca mulatta) fed infant formula (RRR-αT or all rac-αT) with a reference group fed a mixed diet of breast milk and maternal diet. METHODS: From 1 d after birth until 6 mo of age, infants (n = 23) were either nursery reared and exclusively fed 1 of 2 formulas by staff personnel or were community housed with their mothers and consumed a mixed reference diet of breast milk (69 mL/d at 6 mo) transitioning to monkey diet at ∼2 mo (MF; n = 8). Formulas contained either 21 µmol RRR-αT/L (NAT-F; n = 8) or 30 µmol all rac-αT/L (SYN-F; n = 7). Total αT and αT stereoisomers were analyzed in breast milk at 2, 4, and 6 mo and in monkey plasma and liver and 6 brain regions at 6 mo of age. α-Tocopherol transfer protein (α-TTP), lipoprotein αT, and urinary α-carboxyethyl-hydroxychroman (α-CEHC) were measured. One-way ANOVA with Tukey's post-hoc test was used for analysis. RESULTS: At study termination, plasma, liver, lipoprotein, and brain total αT did not differ between groups. However, the NAT-F-fed group had higher RRR-αT than the SYN-F-fed group (P < 0.01) and the MF group (P < 0.0001) in plasma (1.7- and 2.7-fold) and brain (1.5- and 2.5-fold). Synthetic αT 2R stereoisomers (SYNTH-2R) were generally 3- and 7-fold lower in brain regions of the NAT-F group compared with those of the SYN-F and MF groups (P < 0.05). SYNTH-2R stereoisomers were 2-fold higher in MF than SYN-F (P < 0.0001). The plasma percentage of SYNTH-2R was negatively correlated with the brain percentage of RRR-αT (r = -0.99, P < 0.0001). Brain αT profiles were not explained by α-TTP mRNA or protein expression. Urine α-CEHC was 3 times higher in the NAT-F than in the MF group (P < 0.01). CONCLUSIONS: Consumption of infant formulas with natural (NAT-F) compared with synthetic (SYN-F) αT differentially impacted brain αT stereoisomer profiles in infant rhesus macaques. Future studies should assess the functional implications of αT stereoisomer profiles on brain health.


Asunto(s)
Alimentación Animal/análisis , Química Encefálica , Macaca mulatta , Leche , alfa-Tocoferol/administración & dosificación , alfa-Tocoferol/química , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cromanos/orina , Dieta , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Humanos , Lactante , Alimentos Infantiles , Propionatos/orina , alfa-Tocoferol/sangre
10.
Neuroimage ; 184: 372-385, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30201462

RESUMEN

Breastfeeding is positively associated with several outcomes reflecting early brain development and cognitive functioning. Brain neuroimaging studies have shown that exclusively breastfed children have increased white matter and subcortical gray matter volume compared to formula-fed children. However, it is difficult to disentangle the effects of nutrition in breast milk from other confounding factors that affect brain development, particularly in studies of human subjects. Among the nutrients provided by human breast milk are the carotenoid lutein and the natural form of tocopherol, both of which are selectively deposited in brain. Lutein is the predominant carotenoid in breast milk but not in most infant formulas, whereas infant formulas are supplemented with the synthetic form of tocopherol. In this study, a non-human primate model was used to investigate the effects of breastfeeding versus formula-feeding, as well as lutein and natural RRR-α-tocopherol supplementation of infant formula, on brain maturation under controlled experimental conditions. Infant rhesus macaques (Macaca mulatta) were exclusively breastfed, or were fed infant formulas with different levels and sources of lutein and α-tocopherol. Of note, the breastfed group were mother-reared whereas the formula-fed infants were nursery-reared. Brain structural and diffusion MR images were collected, and brain T2 was measured, at two, four and six months of age. The mother-reared breastfed group was observed to differ from the formula-fed groups by possessing higher diffusion fractional anisotropy (FA) in the corpus callosum, and lower FA in the cerebral cortex at four and six months of age. Cortical regions exhibiting the largest differences include primary motor, premotor, lateral prefrontal, and inferior temporal cortices. No differences were found between the formula groups. Although this study did not identify a nutritional component of breast milk that could be provided to infant formula to facilitate brain maturation consistent with that observed in breastfed animals, our findings indicate that breastfeeding promoted maturation of the corpus callosum and cerebral cortical gray matter in the absence of several confounding factors that affect studies in human infants. However, differences in rearing experience remain as a potential contributor to brain structural differences between breastfed and formula fed infants.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Fórmulas Infantiles , Lactancia , Animales , Animales Recién Nacidos , Imagen de Difusión por Resonancia Magnética , Fórmulas Infantiles/química , Luteína , Macaca mulatta , Tocoferoles
12.
Exp Eye Res ; 189: 107825, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31589838

RESUMEN

The development of therapies for retinal disorders is hampered by a lack of appropriate animal models. Higher nonhuman primates are the only animals with retinal structure similar to humans, including the presence of a macula and fovea. However, few nonhuman primate models of genetic retinal disease are known. We identified a lineage of rhesus macaques with a frameshift mutation in exon 3 of the BBS7 gene c.160delG (p.Ala54fs) that is predicted to produce a non-functional protein. In humans, mutations in this and other BBS genes cause Bardet-Biedl syndrome, a ciliopathy and a syndromic form of retinitis pigmentosa generally occurring in conjunction with kidney dysfunction, polydactyly, obesity, and/or hypogonadism. Three full- or half-sibling monkeys homozygous for the BBS7 c.160delG variant, at ages 3.5, 4 and 6 years old, displayed a combination of severe photoreceptor degeneration and progressive kidney disease. In vivo retinal imaging revealed features of severe macular degeneration, including absence of photoreceptor layers, degeneration of the retinal pigment epithelium, and retinal vasculature atrophy. Electroretinography in the 3.5-year-old case demonstrated loss of scotopic and photopic a-waves and markedly reduced and delayed b-waves. Histological assessments in the 4- and 6-year-old cases confirmed profound loss of photoreceptors and inner retinal neurons across the posterior retina, with dramatic thinning and disorganization of all cell layers, abundant microglia, absent or displaced RPE cells, and significant gliosis in the subretinal space. Retinal structure, including presence of photoreceptors, was preserved only in the far periphery. Ultrasound imaging of the kidneys revealed deranged architecture, and renal histopathology identified distorted contours with depressed, fibrotic foci and firmly adhered renal capsules; renal failure occurred in the 6-year-old case. Magnetic resonance imaging obtained in one case revealed abnormally low total brain volume and unilateral ventricular enlargement. The one male had abnormally small testes at 4 years of age, but polydactyly and obesity were not observed. Thus, monkeys homozygous for the BBS7 c.160delG variant closely mirrored several key features of the human BBS syndrome. This finding represents the first identification of a naturally-occurring nonhuman primate model of BBS, and more broadly the first such model of retinitis pigmentosa and a ciliopathy with an associated genetic mutation. This important new preclinical model will provide the basis for better understanding of disease progression and for the testing of new therapeutic options, including gene and cell-based therapies, not only for BBS but also for multiple forms of photoreceptor degeneration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Síndrome de Bardet-Biedl/diagnóstico , Ceguera/etiología , Proteínas del Citoesqueleto/genética , ADN/genética , Mutación del Sistema de Lectura , Retina/patología , Retinitis Pigmentosa/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Síndrome de Bardet-Biedl/complicaciones , Síndrome de Bardet-Biedl/genética , Encéfalo/patología , Proteínas del Citoesqueleto/metabolismo , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Electrorretinografía , Femenino , Angiografía con Fluoresceína/métodos , Fondo de Ojo , Inmunohistoquímica , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Tomografía de Coherencia Óptica/métodos
13.
Neurobiol Dis ; 119: 65-78, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30048804

RESUMEN

We have identified a natural Japanese macaque model of the childhood neurodegenerative disorder neuronal ceroid lipofuscinosis, commonly known as Batten Disease, caused by a homozygous frameshift mutation in the CLN7 gene (CLN7-/-). Affected macaques display progressive neurological deficits including visual impairment, tremor, incoordination, ataxia and impaired balance. Imaging, functional and pathological studies revealed that CLN7-/- macaques have reduced retinal thickness and retinal function early in disease, followed by profound cerebral and cerebellar atrophy that progresses over a five to six-year disease course. Histological analyses showed an accumulation of cerebral, cerebellar and cardiac storage material as well as degeneration of neurons, white matter fragmentation and reactive gliosis throughout the brain of affected animals. This novel CLN7-/- macaque model recapitulates key behavioral and neuropathological features of human Batten Disease and provides novel insights into the pathophysiology linked to CLN7 mutations. These animals will be invaluable for evaluating promising therapeutic strategies for this devastating disease.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de Transporte de Membrana/genética , Lipofuscinosis Ceroideas Neuronales/diagnóstico por imagen , Lipofuscinosis Ceroideas Neuronales/genética , Animales , Femenino , Técnicas de Inactivación de Genes/métodos , Locomoción/fisiología , Macaca , Masculino , Mutación Missense/genética , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Equilibrio Postural/fisiología , Primates , Trastornos de la Visión/diagnóstico por imagen , Trastornos de la Visión/genética , Trastornos de la Visión/fisiopatología
14.
Arch Biochem Biophys ; 654: 97-104, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30003875

RESUMEN

The purpose of this study was to investigate if the enhanced bioaccumulation of lutein in retina and brain of breastfed, compared to formula-fed, infant monkeys was associated with higher levels of serum total and HDL cholesterol, apolipoproteins, or mRNA/protein expression of carotenoid-related genes. Newborn rhesus macaques were either breastfed, fed a carotenoid-supplemented formula, or fed an unsupplemented formula for 6 months (n = 8, 8, 7). Real-time qPCR and western blotting were performed in two brain regions (occipital cortex and cerebellum) and two retina regions (macular and peripheral retina). Breastfed infants had higher serum total cholesterol, HDL cholesterol, apoA-I, and apoB-100 levels than the combined formula-fed groups (P < 0.05). Breast milk or infant formulas did not alter expression of the nine genes (CD36, SCARB1, SCARB2, LDLR, STARD3, GSTP1, BCO1, BCO2, RPE65) examined except for SCARB2 in the retina and brain regions. In conclusion, dietary regimen did not impact the expression of carotenoid-related genes except for SCARB2. However, carotenoid-related genes were differentially expressed across brain and retina regions. Breastfed infants had higher serum total and HDL cholesterol, and apolipoproteins, suggesting that lipoprotein levels might be important for delivering lutein to tissues, especially the macular retina, during infancy.


Asunto(s)
Encéfalo/metabolismo , Lactancia Materna , Carotenoides/metabolismo , Colesterol/sangre , Expresión Génica , Alimentos Infantiles , Lipoproteínas/sangre , Luteína/metabolismo , Receptores Depuradores/genética , Retina/metabolismo , Animales , Macaca mulatta
15.
J Nutr ; 148(1): 31-39, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29378053

RESUMEN

Background: Lutein, a yellow xanthophyll, selectively accumulates in primate retina and brain. Lutein may play a critical role in neural and retinal development, but few studies have investigated the impact of dietary source on its bioaccumulation in infants. Objective: We explored the bioaccumulation of lutein in infant rhesus macaques following breastfeeding or formula-feeding. Methods: From birth to 6 mo of age, male and female rhesus macaques (Macaca mulatta) were either breastfed (BF) (n = 8), fed a formula supplemented with lutein, zeaxanthin, ß-carotene, and lycopene (237, 19.0, 74.2, and 338 nmol/kg, supplemented formula-fed; SF) (n = 8), or fed a formula with low amounts of these carotenoids (38.6, 2.3, 21.5, and 0 nmol/kg, unsupplemented formula-fed; UF) (n = 7). The concentrations of carotenoids in serum and tissues were analyzed by HPLC. Results: At 6 mo of age, the BF group exhibited significantly higher lutein concentrations in serum, all brain regions, macular and peripheral retina, adipose tissue, liver, and other tissues compared to both formula-fed groups (P < 0.001). Lutein concentrations were higher in the SF group than in the UF group in serum and all tissues, with the exception of macular retina. Lutein was differentially distributed across brain areas, with the highest concentrations in the occipital cortex, regardless of the diet. Zeaxanthin was present in all brain regions but only in the BF infants; it was present in both retinal regions in all groups but was significantly enhanced in BF infants compared to either formula group (P < 0.001). ß-Carotene accumulated across brain regions in all groups, but was not detected in retina. Although lycopene was found in many tissues of the SF group, it was not detected in the brain or retina. Conclusions: Although carotenoid supplementation of infant formula significantly increased serum and tissue lutein concentrations compared to unsupplemented formula, concentrations were still well below those in BF infants. Regardless of diet, occipital cortex showed selectively higher lutein deposition than other brain regions, suggesting lutein's role in visual processing in early life.


Asunto(s)
Encéfalo/metabolismo , Dieta/veterinaria , Alimentos Formulados , Luteína/farmacocinética , Animales , Animales Recién Nacidos , Carotenoides/administración & dosificación , Suplementos Dietéticos , Femenino , Luteína/administración & dosificación , Licopeno , Macaca mulatta , Masculino , Leche/química , Retina/metabolismo , Xantófilas/administración & dosificación , Zeaxantinas/administración & dosificación , beta Caroteno/administración & dosificación
16.
Adv Exp Med Biol ; 1074: 641-647, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29721998

RESUMEN

Transplantation of potentially therapeutic cells into the subretinal space is a promising prospective therapy for the treatment of retinal degenerative diseases including age-related macular degeneration (AMD). In rodent models with photoreceptor degeneration, subretinal transplantation of cell suspensions has repeatedly been demonstrated to rescue behaviorally measured vision, maintain electrophysiological responses from the retina and the brain, and slow the degeneration of rod and cone photoreceptors for extended periods. These studies have led to the initiation of a number of FDA-approved clinical trials for application of cell-based therapy for AMD and other retinal degenerative diseases. However, translation from rodent models directly into human clinical trials skips an important intermediary preclinical step that is needed to address critical issues for intraocular cell transplantation. These include determination of the most appropriate and least problematic surgical approach, the application of treatment in an eye with similar size and structure including the presence of a macula, and a thorough understanding of the immunological considerations regarding graft survival and the consequences of grafted cell rejection. This chapter will review these and related issues and will document current efforts to address these concerns.


Asunto(s)
Modelos Animales , Primates , Degeneración Retiniana/terapia , Roedores , Trasplante de Células Madre/métodos , Animales , Tamaño Corporal , Células Madre Embrionarias/inmunología , Células Madre Embrionarias/trasplante , Rechazo de Injerto/inmunología , Terapia de Inmunosupresión , Degeneración Macular/terapia , Especificidad de la Especie , Inmunología del Trasplante
17.
J Neurosci ; 36(40): 10416-10424, 2016 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-27707975

RESUMEN

Studies of the effect of hormone therapy on cognitive function in menopausal women have been equivocal, in part due to differences in the type and timing of hormone treatment. Here we cognitively tested aged female rhesus macaques on (1) the delayed response task of spatial working memory, (2) a visuospatial attention task that measured spatially and temporally cued reaction times, and (3) a simple reaction time task as a control for motor speed. After task acquisition, animals were ovariectomized (OVX). Their performance was compared with intact controls for 2 months, at which time no group differences were found. The OVX animals were then assigned to treatment with either a subcutaneous sham implant (OVX), 17-ß estradiol (E) implant (OVX+E) or E implant plus cyclic oral progesterone (OVX+EP). All groups were then tested repeatedly over 12 months. The OVX+E animals performed significantly better on the delayed response task than all of the other groups for much of the 12 month testing period. The OVX+EP animals also showed improved performance in the delayed response task, but only at 30 s delays and with performance levels below that of OVX+E animals. The OVX+E animals also performed significantly better in the visuospatial attention task, particularly in the most challenging invalid cue condition; this difference also was maintained across the 12 month testing period. Simple reaction time was not affected by hormonal manipulation. These data demonstrate that chronic, continuous administration of E can exert multiple beneficial cognitive effects in aged, OVX rhesus macaque females. SIGNIFICANCE STATEMENT: Hormone therapy after menopause is controversial. We tested the effects of hormone replacement in aged rhesus macaques, soon after surgically-induced menopause [ovariectomy (OVX)], on tests of memory and attention. Untreated ovarian-intact and OVX animals were compared with OVX animals receiving estradiol (E) alone or E with progesterone (P). E was administered in a continuous fashion via subcutaneous implant, whereas P was administered orally in a cyclic fashion. On both tests, E-treated animals performed better than the other 3 experimental groups across 1 year of treatment. Thus, in this monkey model, chronic E administered soon after the loss of ovarian hormones had long-term benefits for cognitive function.


Asunto(s)
Envejecimiento/psicología , Cognición/efectos de los fármacos , Terapia de Reemplazo de Estrógeno/psicología , Animales , Atención/efectos de los fármacos , Señales (Psicología) , Estradiol/sangre , Estradiol/farmacología , Femenino , Macaca mulatta , Memoria a Corto Plazo/efectos de los fármacos , Ovariectomía , Progesterona/sangre , Progesterona/farmacología , Desempeño Psicomotor/efectos de los fármacos , Tiempo de Reacción/efectos de los fármacos , Memoria Espacial/efectos de los fármacos
18.
Anesthesiology ; 126(1): 74-84, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27749311

RESUMEN

BACKGROUND: Experimental evidence correlates anesthetic exposure during early development with neuronal and glial injury and death, as well as behavioral and cognitive impairments, in young animals. Several, although not all, retrospective human studies of neurocognitive and behavioral disorders after childhood exposure to anesthesia suggest a similar association. Few studies have specifically investigated the effects of infant anesthesia exposure on subsequent neurobehavioral development. Using a highly translational nonhuman primate model, the authors investigated the potential dose-dependent effects of anesthesia across the first year of development. METHODS: The authors examined the effects of single or multiple early postnatal isoflurane exposures on subsequent behavioral development in 24 socially reared rhesus macaques. Infants were exposed to 5 h of isoflurane anesthesia once, three times (ISO-3), or not at all (control). The authors assessed reflex development and anxiety using standardized tests. At approximately 1 yr, infants (n = 23) were weaned and housed indoors with 5 to 6 other subjects. The authors recorded their response to this move and reassessed anxiety. RESULTS: Compared to controls, animals exposed to repeated isoflurane (ISO-3) presented with motor reflex deficits at 1 month (median [range]: ISO-3 = 2 [1 to 5] vs. control = 5 [3 to 7]; P < 0.005) and responded to their new social environment with increased anxiety (median [range]: ISO-3 = 0.4 bouts/min [0.2 to 0.6]; control = 0.25 bouts/min [0.1 to 0.3]; P = 0.05) and affiliative/appeasement behavior (median [range]: ISO-3 = 0.1 [0 to 0.2]; control = 0 bouts/min [0 to 0.1]; P < 0.01) at 12 months. There were no statistically significant behavioral alterations after single isoflurane exposure. CONCLUSIONS: Neonatal exposure to isoflurane, particularly when repeated, has long-term behavioral consequences affecting both motor and socioemotional aspects of behavior.


Asunto(s)
Anestésicos por Inhalación/farmacología , Ansiedad/inducido químicamente , Conducta Animal/efectos de los fármacos , Isoflurano/farmacología , Actividad Motora/efectos de los fármacos , Reflejo/efectos de los fármacos , Anestésicos por Inhalación/efectos adversos , Animales , Animales Recién Nacidos , Isoflurano/efectos adversos , Macaca mulatta , Modelos Animales , Tiempo
19.
Retina ; 37(11): 2162-2166, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28098738

RESUMEN

PURPOSE: To develop a novel surgical approach to provide consistent delivery of cell suspension into the subretinal space without cell leakage into the vitreous. METHODS: Cell viability was assessed following mock injections to determine the optimal size cannula for delivery of the cells. A pars plana without vitrectomy approach was used to create a subretinal bleb with balanced salt solution using a 41-gauge cannula. GFP-labeled retinal pigment epithelium cells were injected through transretinal (n = 8) and transscleral (n = 16) injection approaches. Optical coherence tomography, fundus photography and autofluorescence, and histological analysis were used to evaluate surgical success. RESULTS: The 30-gauge cannula yielded the highest recovery of cells with highest viability. The transretinal approach consistently resulted in transplanted cells in the vitreous, with some cells coming to rest on the inner limiting membrane. Conversely, the transscleral approach resulted in transplantation of cells into the subretinal space in 100% of cases. Histological analysis confirmed these results. CONCLUSION: We have developed a novel surgical approach that resulted in encapsulation of transplanted cells into the subretinal space with a 100% success rate. This approach will provide a useful tool for further cell transplantation study and may provide an approach for clinical application of delivering cells to the subretinal space.


Asunto(s)
Trasplante de Células/métodos , Degeneración Macular/cirugía , Epitelio Pigmentado de la Retina/trasplante , Trasplante de Células Madre/métodos , Tomografía de Coherencia Óptica/métodos , Animales , Supervivencia Celular , Modelos Animales de Enfermedad , Angiografía con Fluoresceína , Fondo de Ojo , Inyecciones , Macaca mulatta , Degeneración Macular/diagnóstico , Retina , Epitelio Pigmentado de la Retina/citología , Resultado del Tratamiento , Vitrectomía
20.
Clin Sci (Lond) ; 130(21): 1881-8, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27503949

RESUMEN

Postprandial hyperglycaemia leads to a transient impairment in endothelial function; however, the mechanisms remain largely unknown. Previous work in cell culture models demonstrate that high glucose results in endoplasmic reticulum (ER) stress and, in animal studies, ER stress has been implicated as a cause of endothelial dysfunction. In the present study, we tested the hypothesis that acute oral administration of tauroursodeoxycholic acid (TUDCA, 1500 mg), a chemical chaperone known to alleviate ER stress, would prevent hyperglycaemia-induced endothelial dysfunction. In 12 young healthy subjects (seven men, five women), brachial artery flow-mediated dilation (FMD) was assessed at baseline, and at 60 and 120 min after an oral glucose challenge. Subjects were tested on two separate visits in a single-blind randomized cross-over design: after oral ingestion of TUDCA or placebo capsules. FMD was reduced from baseline during hyperglycaemia under the placebo condition (-32% at 60 min and -28% at 120 min post oral glucose load; P<0.05 from baseline) but not under the TUDCA condition (-4% at 60 min and +0.3% at 120 min post oral glucose load; P>0.05 from baseline). Postprandial plasma glucose and insulin were not altered by TUDCA ingestion. Plasma oxidative stress markers 3-nitrotyrosine and thiobarbituric acid reactive substance (TBARS) remained unaltered throughout the oral glucose challenge in both conditions. These results suggest that hyperglycaemia-induced endothelial dysfunction can be mitigated by oral administration of TUDCA, thus supporting the hypothesis that ER stress may contribute to endothelial dysfunction during postprandial hyperglycaemia.


Asunto(s)
Glucemia/metabolismo , Enfermedades Cardiovasculares/prevención & control , Endotelio Vascular/efectos de los fármacos , Hiperglucemia/complicaciones , Hiperglucemia/metabolismo , Ácido Tauroquenodesoxicólico/administración & dosificación , Adulto , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Endotelio Vascular/metabolismo , Femenino , Humanos , Insulina/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Periodo Posprandial , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA