Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(17): 7367-7379, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38644786

RESUMEN

Composting is widely used for organic waste management and is also a major source of nitrous oxide (N2O) emission. New insight into microbial sources and sinks is essential for process regulation to reduce N2O emission from composting. This study used genome-resolved metagenomics to decipher the genomic structures and physiological behaviors of individual bacteria for N2O sources and sinks during composting. Results showed that several nosZ-lacking denitrifiers in feedstocks drove N2O emission at the beginning of the composting. Such emission became negligible at the thermophilic stage, as high temperatures inhibited all denitrifiers for N2O production except for those containing nirK. The nosZ-lacking denitrifiers were notably enriched to increase N2O production at the cooling stage. Nevertheless, organic biodegradation limited energy availability for chemotaxis and flagellar assembly to restrain nirKS-containing denitrifiers for nitrate reduction toward N2O sources but insignificantly interrupt norBC- and nosZ-containing bacteria (particularly nosZ-containing nondenitrifiers) for N2O sinks by capturing N2O and nitric oxide (NO) for energy production, thereby reducing N2O emission at the mature stage. Furthermore, nosZII-type bacteria included all nosZ-containing nondenitrifiers and dominated N2O sinks. Thus, targeted strategies can be developed to restrict the physiological behaviors of nirKS-containing denitrifiers and expand the taxonomic distribution of nosZ for effective N2O mitigation in composting.


Asunto(s)
Compostaje , Óxido Nitroso , Óxido Nitroso/metabolismo , Bacterias/metabolismo
2.
Environ Sci Technol ; 56(12): 8197-8208, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35675163

RESUMEN

This work examined the chiral inversion of 2-arylpropionic acids (2-APAs) under anaerobic conditions and the associated microbial community. The anaerobic condition was simulated by two identical anaerobic digesters. Each digester was fed with the substrate containing 11 either pure (R)- or pure (S)-2-APA enantiomers. Chiral inversion was evidenced by the concentration increase of the other enantiomer in the digestate and the changes in the enantiomeric fraction between the two enantiomers. Both digesters showed similar and poor removal of 2-APAs (≤30%, except for naproxen) and diverse chiral inversion behaviors under anaerobic conditions. Four compounds exhibited (S → R) unidirectional inversion [flurbiprofen, ketoprofen, naproxen, and 2-(4-tert-butylphenyl)propionic acid], and the remaining seven compounds showed bidirectional inversion. Several aerobic and facultative anaerobic bacterial genera (Candidatus Microthrix, Rhodococcus, Mycobacterium, Gordonia, and Sphingobium) were identified in both digesters and predicted to harbor the 2-arylpropionyl-CoA epimerase (enzyme involved in chiral inversion) encoding gene. These genera presented at low abundances, <0.5% in the digester dosed with (R)-2-APAs and <0.2% in the digester dosed with (S)-2-APAs. The low abundances of these genera explain the limited extent of chiral inversion observed in this study.


Asunto(s)
Flurbiprofeno , Naproxeno , Anaerobiosis , Antiinflamatorios no Esteroideos , Estereoisomerismo
3.
Chem Eng J ; 441: 135936, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35345777

RESUMEN

The global data on the temporal tracking of the COVID-19 through wastewater surveillance needs to be comparatively evaluated to generate a proper and precise understanding of the robustness, advantages, and sensitivity of the wastewater-based epidemiological (WBE) approach. We reviewed the current state of knowledge based on several scientific articles pertaining to temporal variations in COVID-19 cases captured via viral RNA predictions in wastewater. This paper primarily focuses on analyzing the WBE-based temporal variation reported globally to check if the reported early warning lead-time generated through environmental surveillance is pragmatic or latent. We have compiled the geographical variations reported as lead time in various WBE reports to strike a precise correlation between COVID-19 cases and genome copies detected through wastewater surveillance, with respect to the sampling dates, separately for WASH and non-WASH countries. We highlighted sampling methods, climatic and weather conditions that significantly affected the concentration of viral SARS-CoV-2 RNA detected in wastewater, and thus the lead time reported from the various climatic zones with diverse WASH situations were different. Our major findings are: i) WBE reports around the world are not comparable, especially in terms of gene copies detected, lag-time gained between monitored RNA peak and outbreak/peak of reported case, as well as per capita RNA concentrations; ii) Varying sanitation facility and climatic conditions that impact virus degradation rate are two major interfering features limiting the comparability of WBE results, and iii) WBE is better applicable to WASH countries having well-connected sewerage system.

4.
J Environ Manage ; 244: 40-47, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31108309

RESUMEN

This study investigated the influence of three different organic carbon sources including sodium acetate (SOD), glucose (GLU), and starch (STAR), on soluble microbial products (SMP), which presumably have dissimilar uptake rates and metabolic pathways, in sequencing batch reactors (SBR) and their subsequent effects on membrane fouling of ultrafiltration (UF). SMP were mainly characterized by fluorescence excitation emission matrix coupled with parallel factor analysis (EEM-PARAFAC) and size exclusion chromatography (SEC). SMP produced in SOD-fed SBR showed higher abundances of protein-like fluorescent component and large sized aliphatic biopolymer (BP) than GLU- or STAR-fed counterpart did, while the STAR-based operation resulted in more SMP enriched with humic-like fluorescence. The differences in SMP exerted marked effects on UF membrane fouling as indicated by the highest fouling potential with reversibility shown for the SMP from the SOD-fed reactor. Regardless of the carbon source, BP fraction and protein-like component exhibited the greatest extent of reversible fouling, suggesting that size exclusion plays a critical role. However, notable differences in the reversible fouling propensity of relatively smaller size fractions among the three SBRs signified the possible involvement of chemical interactions as a secondary fouling mechanism and its dependency on different carbon sources. Our results provide a new insight into the roles of carbon sources in the characteristics of SMP in biological treatment systems and their effects on the post-treatment using membrane filtration, which is ultimately beneficial to the optimization of biological treatment design and membrane filtration operation.


Asunto(s)
Carbono , Ultrafiltración , Reactores Biológicos , Cromatografía en Gel , Membranas Artificiales , Espectrometría de Fluorescencia
5.
J Environ Manage ; 247: 135-139, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31247360

RESUMEN

Seawater-driven forward osmosis to enrich nutrients from sludge centrate and reduce membrane fouling is demonstrated. Due to enrichment and pH increase in the feed solution, without appropriate control measure, nutrient precipitation can occur directly on the membrane surface causing severe membrane fouling and reducing nutrient enrichment efficiency. Indeed without agitating the feed, there was less precipitation on the membrane surface, compared to with agitation. In addition, increase in the membrane area over permeate volume ratio significantly reduced the filtration time and nutrient precipitation. A novel technique to maintain the draw solution (DS) at an acidic condition was developed to improve nutrient enrichment and reduce membrane fouling. By using this technique and a high membrane surface to permeate volume ratio, nutrient enrichment similar to the theoretical efficiency was successfully demonstrated. Our technique reduced the filtration time to achieve 70% water recovery by over 90% (compared to unbuffered seawater as the DS, small membrane area, and feed agitation), as a result of significantly less membrane fouling. The amount of phosphorus precipitate on the membrane surface decreased by more than 10 times. The enrichment of ammonia and phosphorus as a function of water recovery was similar to the theoretical calculation, indicating negligible nutrient loss due to precipitation.


Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Membranas Artificiales , Nutrientes , Ósmosis , Agua de Mar
6.
J Environ Manage ; 251: 109594, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31557668

RESUMEN

Activated sludge (AS) and return activated sludge (RAS) microbial communities from three full-scale municipal wastewater treatment plants (denoted plant A, B and C) were compared to assess the impact of sludge settling (i.e. gravity thickening in the clarifier) and profile microorganisms responsible for nutrient removal and reactor foaming. The results show that all three plants were dominated with microbes in the phyla of Proteobacteria, Bacteroidetes, Verrucomicrobia, Actinobacteria, Chloroflexi, Firmicutes, Nitrospirae, Spirochaetae, Acidobacteria and Saccharibacteria. AS and RAS shared above 80% similarity in the microbial community composition, indicating that sludge thickening does not significantly alter the microbial composition. Autotrophic and heterotrophic nitrifiers were present in the AS. However, the abundance of autotrophic nitrifiers was significantly lower than that of the heterotrophic nitrifiers. Thus, ammonium removal at these plants was achieved mostly by heterotrophic nitrification. Microbes that can cause foaming were at 3.2% abundance, and this result is well corroborated with occasional aerobic biological reactor foaming. By contrast, these microbes were not abundant (<2.1%) at plant A and C, where aerobic biological reactor foaming has not been reported.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Reactores Biológicos , Nitrificación , ARN Ribosómico 16S , Eliminación de Residuos Líquidos , Aguas Residuales
7.
Environ Sci Technol ; 52(18): 10215-10223, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30137968

RESUMEN

Recycling water from municipal wastewater offers a reliable and sustainable solution to cities and regions facing shortage of water supply. Places including California and Singapore have developed advanced water reuse programs as an integral part of their water management strategy. Membrane technology, particularly reverse osmosis, has been playing a key role in producing high quality recycled water. This feature paper highlights the current status and future perspectives of advanced membrane processes to meet potable water reuse. Recent advances in membrane materials and process configurations are presented and opportunities and challenges are identified in the context of water reuse.


Asunto(s)
Agua Potable , Purificación del Agua , California , Ciudades , Aguas Residuales , Abastecimiento de Agua
8.
Environ Sci Technol ; 51(24): 14311-14320, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29135240

RESUMEN

In this study, we demonstrate the potential of an osmotic membrane bioreactor (OMBR)-membrane distillation (MD) hybrid system for simultaneous wastewater reuse and seawater desalination. A stable OMBR water flux of approximately 6 L m-2 h-1 was achieved when using MD to regenerate the seawater draw solution. Water production by the MD process was higher than that from OMBR to desalinate additional seawater and thus account for draw solute loss due to the reverse salt flux. Amplicon sequencing on the Miseq Illumina platform evidenced bacterial acclimatization to salinity build-up in the bioreactor, though there was a reduction in the bacterial community diversity. In particular, 18 halophilic and halotolerant bacterial genera were identified with notable abundance in the bioreactor. Thus, the effective biological treatment was maintained during OMBR-MD operation. By coupling biological treatment and two high rejection membrane processes, the OMBR-MD hybrid system could effectively remove (>90%) all 30 trace organic contaminants of significant concern investigated here and produce high quality water. Nevertheless, further study is necessary to address MD membrane fouling due to the accumulation of organic matter, particularly protein- and humic-like substances, in seawater draw solution.


Asunto(s)
Reactores Biológicos , Destilación , Aguas Residuales , Membranas Artificiales , Ósmosis , Agua de Mar , Purificación del Agua
9.
J Environ Manage ; 201: 89-109, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28651223

RESUMEN

White-rot fungi (WRF) and their ligninolytic enzymes have been investigated for the removal of a broad spectrum of trace organic contaminants (TrOCs) mostly from synthetic wastewater in lab-scale experiments. Only a few studies have reported the efficiency of such systems for the removal of TrOCs from real wastewater. Wastewater derived organic and inorganic compounds can inhibit: (i) WRF growth and their enzyme production capacity; (ii) enzymatic activity of ligninolytic enzymes; and (iii) catalytic efficiency of both WRF and enzymes. It is observed that essential metals such as Cu, Mn and Co at trace concertation (up to 1 mM) can improve the growth of WRF species, whereas non-essential metal such as Pb, Cd and Hg at 1 mM concentration can inhibit WRF growth and their enzyme production. In the case of purified enzymes, most of the tested metals at 1-5 mM concentration do not significantly inhibit the activity of laccases. Organic interfering compounds such as oxalic acid and ethylenediaminetetraacetic acid (EDTA) at 1 mM concentration are potent inhibitors of WRF and their extracellular enzymes. However, inhibitory effects induced by interfering compounds are strongly influenced by the type of WRF species as well as experimental conditions (e.g., incubation time and TrOC type). In this review, mechanisms and factors governing the interactions of interfering compounds with WRF and their ligninolytic enzymes are reviewed and elucidated. In addition, the performance of WRF and their ligninolytic enzymes for the removal of TrOCs from synthetic and real wastewater is critically summarized.


Asunto(s)
Basidiomycota , Aguas Residuales , Purificación del Agua , Lacasa , Compuestos Orgánicos
10.
J Environ Manage ; 185: 79-95, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27815004

RESUMEN

This paper critically reviews the multidimensional benefits of ozonation in wastewater treatment plants. These benefits include sludge reduction, removal of emerging trace organic contaminants (TrOC) from wastewater and sludge, and resource recovery from sludge. Literature shows that ozonation leads to sludge solubilisation, reducing overall biomass yield. Sludge solubilisation is primarily influenced by ozone dosage, which, in turn, depends on the fraction of ozonated sludge, ozone concentration, and sludge concentration. Additionally, sludge ozonation facilitates the removal of TrOCs from wastewater. On the other hand, by inducing cell lysis, ozonation increases the chemical oxygen demand (COD) and nutrient concentration of the sludge supernatant, which deteriorates effluent quality. This issue can be resolved by implementing resource recovery. Thus far, successful retrieval of phosphorous from ozonated sludge supernatant has been performed. The recovery of phosphorous and other resources from sludge could help offset the operation cost of ozonation, and give greater incentive for wastewater treatment plants to adapt this approach.


Asunto(s)
Ozono , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Análisis de la Demanda Biológica de Oxígeno , Instalaciones de Eliminación de Residuos
11.
Water Sci Technol ; 76(7-8): 1816-1826, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28991796

RESUMEN

This study demonstrates continuous enantiomeric inversion and further biotransformation of chiral profens including ibuprofen, naproxen and ketoprofen by an enzymatic membrane bioreactor (EMBR) dosed with laccase. The EMBR showed non-enantioselective transformations, with high and consistent transformation of both (R)- and (S)-ibuprofen (93 ± 6%, n = 10), but lower removals of both enantiomers of naproxen (46 ± 16%, n = 10) and ketoprofen (48 ± 17%, n = 10). Enantiomeric analysis revealed a bidirectional but uneven inversion of the profens, for example 14% inversion of (R)- to (S)- compared to 4% from (S)- to (R)-naproxen. With redox-mediator addition, the enzymatic chiral inversion of both (R)- and (S)-profens remained unchanged, although the overall conversion became enantioselective; except for (S)-naproxen, the addition of redox mediator promoted the degradation of (R)-profens only.


Asunto(s)
Reactores Biológicos , Ibuprofeno/metabolismo , Cetoprofeno/metabolismo , Naproxeno/metabolismo , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/metabolismo , Biotransformación , Ibuprofeno/química , Cetoprofeno/química , Membranas Artificiales , Naproxeno/química
12.
Environ Sci Technol ; 50(11): 5840-8, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27160324

RESUMEN

Forward osmosis (FO) is an emerging membrane process with potential applications in the treatment of highly fouling feedwaters. However, biofouling, the adhesion of microorganisms to the membrane and the subsequent formation of biofilms, remains a major limitation since antifouling membrane modifications offer limited protection against biofouling. In this study, we evaluated the use of graphene oxide (GO) for biofouling mitigation in FO. GO functionalization of thin-film composite membranes (GO-TFC) increased the surface hydrophilicity and imparted antimicrobial activity to the membrane without altering its transport properties. After 1 h of contact time, deposition and viability of Pseudomonas aeruginosa cells on GO-TFC were reduced by 36% and 30%, respectively, compared to pristine membranes. When GO-TFC membranes were tested for treatment of an artificial secondary wastewater supplemented with P. aeruginosa, membrane biofouling was reduced by 50% after 24 h of operation. This biofouling resistance is attributed to the reduced accumulation of microbial biomass on GO-TFC compared to pristine membranes. In addition, confocal microscopy demonstrated that cells deposited on the membrane surface are inactivated, resulting in a layer of dead cells on GO-TFC that limit biofilm formation. These findings highlight the potential of GO to be used for biofouling mitigation in FO.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Grafito , Biopelículas , Membranas Artificiales , Ósmosis , Óxidos , Purificación del Agua
13.
Environ Sci Technol ; 49(22): 13222-9, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26503882

RESUMEN

We investigated the role of reverse divalent cation diffusion in forward osmosis (FO) biofouling. FO biofouling by Pseudomonas aeruginosa was simulated using pristine and chlorine-treated thin-film composite polyamide membranes with either MgCl2 or CaCl2 draw solution. We related FO biofouling behavior-water flux decline, biofilm architecture, and biofilm composition-to reverse cation diffusion. Experimental results demonstrated that reverse calcium diffusion led to significantly more severe water flux decline in comparison with reverse magnesium permeation. Unlike magnesium, reverse calcium permeation dramatically altered the biofilm architecture and composition, where extracellular polymeric substances (EPS) formed a thicker, denser, and more stable biofilm. We propose that FO biofouling was enhanced by complexation of calcium ions to bacterial EPS. This hypothesis was confirmed by dynamic and static light scattering measurements using extracted bacterial EPS with the addition of either MgCl2 or CaCl2 solution. We observed a dramatic increase in the hydrodynamic radius of bacterial EPS with the addition of CaCl2, but no change was observed after addition of MgCl2. Static light scattering revealed that the radius of gyration of bacterial EPS with addition of CaCl2 was 20 times larger than that with the addition of MgCl2. These observations were further confirmed by transmission electron microscopy imaging, where bacterial EPS in the presence of calcium ions was globular, while that with magnesium ions was rod-shaped.


Asunto(s)
Incrustaciones Biológicas , Cationes Bivalentes/química , Pseudomonas aeruginosa/fisiología , Purificación del Agua/métodos , Biopelículas , Cloruro de Calcio/química , Cloruro de Calcio/farmacología , Cloro/química , Difusión , Cloruro de Magnesio/farmacología , Membranas Artificiales , Nylons , Ósmosis , Pseudomonas aeruginosa/efectos de los fármacos , Dispersión de Radiación , Soluciones , Agua , Purificación del Agua/instrumentación
14.
Environ Sci Technol ; 48(18): 10859-68, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25113310

RESUMEN

A hybrid ultrafiltration-osmotic membrane bioreactor (UFO-MBR) was investigated for over 35 days for nutrient and trace organic chemical (TOrC) removal from municipal wastewater. The UFO-MBR system uses both ultrafiltration (UF) and forward osmosis (FO) membranes in parallel to simultaneously extract clean water from an activated sludge reactor for nonpotable (or environmental discharge) and potable reuse, respectively. In the FO stream, water is drawn by osmosis from activated sludge through an FO membrane into a draw solution (DS), which becomes diluted during the process. A reverse osmosis (RO) system is then used to reconcentrate the diluted DS and produce clean water suitable for direct potable reuse. The UF membrane extracts water, dissolved salts, and some nutrients from the system to prevent their accumulation in the activated sludge of the osmotic MBR. The UF permeate can be used for nonpotable reuse purposes (e.g., irrigation and toilet flushing). Results from UFO-MBR investigation illustrated that the chemical oxygen demand, total nitrogen, and total phosphorus removals were greater than 99%, 82%, and 99%, respectively. Twenty TOrCs were detected in the municipal wastewater that was used as feed to the UFO-MBR system. Among these 20 TOrCs, 15 were removed by the hybrid UFO-MBR system to below the detection limit. High FO membrane rejection was observed for all ionic and nonionic hydrophilic TOrCs and lower rejection was observed for nonionic hydrophobic TOrCs. With the exceptions of bisphenol A and DEET, all TOrCs that were detected in the DS were well rejected by the RO membrane. Overall, the UFO-MBR can operate sustainably and has the potential to be utilized for direct potable reuse applications.


Asunto(s)
Reactores Biológicos , Membranas Artificiales , Compuestos Orgánicos/aislamiento & purificación , Ósmosis , Ultrafiltración/métodos , Nitrógeno/aislamiento & purificación , Fósforo/aislamiento & purificación , Salinidad , Factores de Tiempo , Agua/química
15.
Water Sci Technol ; 69(5): 1036-44, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24622553

RESUMEN

This study examined the performance of a novel hybrid system of forward osmosis (FO) combined with vacuum membrane distillation (VMD) for reclaiming water from shale gas drilling flow-back fluid (SGDF). In the hybrid FO-VMD system, water permeated through the FO membrane into a draw solution reservoir, and the VMD process was used for draw solute recovery and clean water production. Using a SGDF sample obtained from a drilling site in China, the hybrid system could achieve almost 90% water recovery. Quality of the reclaimed water was comparable to that of bottled water. In the hybrid FO-VMD system, FO functions as a pre-treatment step to remove most contaminants and constituents that may foul or scale the membrane distillation (MD) membrane, whereas MD produces high quality water. It is envisioned that the FO-VMD system can recover high quality water not only from SGDF but also other wastewaters with high salinity and complex compositions.


Asunto(s)
Destilación/instrumentación , Industria Procesadora y de Extracción , Reciclaje/métodos , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Estudios de Factibilidad , Membranas Artificiales , Ósmosis , Vacio , Calidad del Agua
16.
Water Res ; 258: 121781, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38761597

RESUMEN

Biogas slurry from anaerobic digestion is rich in nutrients but has not been fully utilized due to a high content of suspended solids (SS) causing clogging during agricultural irrigation. This study aimed to evaluate the performance of a novel chitosan and polyferric sulfate (CTS-PFS) composite coagulant for simultaneous flocculation and floatation to enhance SS removal while preserving nutrients in biogas slurry. Orthogonal method was used for experimental design to determine the optimal synthesis and operational conditions of CTS-PFS. Results show that CTS-PFS outperformed individual CTS and PFS coagulant in terms of SS removal and nutrient (nitrogen, phosphorus, and potassium) preservation. Compared to individual CTS and PFS coagulation, the combination of CTS and PFS at the mass ratio of 1:6 showed significantly higher performance by 41.5 % increase in SS removal and 5.2 % reduction in nutrient loss. The improved performance of CTS-PFS was attributed to its formation of polynuclear hydroxyl complexes with ferric oxide groups (e.g. Fe-OH, Fe-O-Fe, Fe-OH-Fe and COO-Fe) to strengthen charge neutralization and adsorption bridging. Data from this study further confirm that CTS-PFS enhanced the removal of small suspended particles and dissolved organic matter in the molecular weight range of 0.4-2.0 kDa and preserved ammonia and potassium better in biogas slurry. Bubbles were generated as hydrogen ions from coagulant hydrolysis interacted with bicarbonate and carbonate in biogas slurry for removing the produced flocs by floatation. Floc flotation was more effective in CTS-PFS coagulation due to the significant production of uniform bubbles, evidenced by the reduction in the viscosity of biogas slurry.


Asunto(s)
Biocombustibles , Quitosano , Floculación , Quitosano/química , Compuestos Férricos/química , Eliminación de Residuos Líquidos/métodos , Fósforo/química , Nitrógeno/química
17.
Chemosphere ; 356: 141869, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38575081

RESUMEN

This study evaluates the repurposing of expired isopropanol (IPA) COVID-19 disinfectant (64% w/w) to pretreat algal biomass for enhancing methane (CH4) yield. The impact of harvesting methods (centrifugation and polymer flocculation) and microwave pretreatment on CH4 production from Scenedesmus sp. microalgal biomass were also investigated. Results show minimal impact of harvesting methods on the CH4 yield, with wet centrifuged and polymer-harvested biomass exhibiting comparable and low CH4 production at 66 and 74 L/kgvolatile solid, respectively. However, microalgae drying significantly increased CH4 yield compared to wet biomass, attributed to cell shrinkage and enhanced digestibility. Consequently, microwave and IPA pretreatment significantly enhanced CH4 production when applied to dried microalgae, yielding a 135% and 212% increase, respectively, compared to non-pretreated wet biomass. These findings underscore the advantage of using dried Scenedesmus sp. over wet biomass and highlight the synergistic effect of combining oven drying with IPA treatment to boost CH4 production whilst reducing COVID-19 waste.


Asunto(s)
Biomasa , COVID-19 , Desinfectantes , Metano , Scenedesmus , Scenedesmus/efectos de los fármacos , Desinfectantes/farmacología , Metano/metabolismo , COVID-19/prevención & control , Microalgas/efectos de los fármacos , Polímeros/química , Polímeros/farmacología , 2-Propanol/farmacología , 2-Propanol/química , SARS-CoV-2/efectos de los fármacos
18.
J Colloid Interface Sci ; 667: 321-337, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38640652

RESUMEN

Building a heterojunction is a fascinating option to guarantee sufficient carrier separation and transfer efficiency, but the mechanism of charge migration at the heterojunction interface has not been thoroughly studied. Herein, MIL-53(Fe)/Bi4O5I2 photocatalyst with a Z-scheme heterojunction structure is constructed, which achieves efficient photocatalytic decontamination under solar light. Driven by the newly-built internal electric field (IEF), the formation of Fe-O-Bi electron migration channel allows for rapid separation and transfer of charge carriers at the heterojunction interface, confirmed by the material characterization and density functional theory (DFT) calculation. The narrower band gap and improved visible light response also contribute to the enhanced photocatalytic activity of composite materials. With levofloxacin as the target pollutant, the optimal MIL-53(Fe)/Bi4O5I2 achieves complete removal of pollutant within 150 min, the photocatalysis rate of which is ca. 4.4 and 26.0 times that of pure Bi4O5I2 and MIL-53(Fe), respectively. Simultaneously, the optimal composite material exhibits satisfactory photodegradation of seven fluoroquinolones, and the photocatalysis rates are as follows: lomefloxacin > ciprofloxacin > enrofloxacin > norfloxacin > pefloxacin > levofloxacin > marbofloxacin. DFT calculations reveal a positive relationship between degradation rate and Fukui index (ƒ0) of main carbon atoms in seven fluoroquinolones. This study sheds light on the existence of electron migration channels at Z-scheme heterojunction interface to ensure sufficient photoinduced carrier transfer, and reveals the influence of pollutant structure on photolysis rate.

19.
J Hazard Mater ; 466: 133637, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38306831

RESUMEN

Addressing per-and polyfluoroalkyl substances (PFAS) contamination is an urgent environmental concern. While most research has focused on PFAS contamination in water matrices, comparatively little attention has been given to sludge, a significant by-product of wastewater treatment. This critical review presents the latest information on emission sources, global distribution, international regulations, analytical methods, and remediation technologies for PFAS in sludge and biosolids from wastewater treatment plants. PFAS concentrations in sludge matrices are typically in hundreds of ng/g dry weight (dw) in developed countries but are rarely reported in developing and least-developed countries due to the limited analytical capability. In comparison to water samples, efficient extraction and cleaning procedures are crucial for PFAS detection in sludge samples. While regulations on PFAS have mainly focused on soil due to biosolids reuse, only two countries have set limits on PFAS in sludge or biosolids with a maximum of 100 ng/g dw for major PFAS. Biological technologies using microbes and enzymes present in sludge are considered as having high potential for PFAS remediation, as they are eco-friendly, low-cost, and promising. By contrast, physical/chemical methods are either energy-intensive or linked to further challenges with PFAS contamination and disposal. The findings of this review deepen our comprehension of PFAS in sludge and have guided future research recommendations.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Aguas del Alcantarillado/química , Biosólidos , Suelo , Agua , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis
20.
ChemSusChem ; 17(11): e202301905, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38268017

RESUMEN

Atmospheric water harvesting (AWH) is considered one of the promising technologies to alleviate the uneven-distribution of water resources and water scarcity in arid regions of the world. Hydrogel-based AWH materials are currently attracting increasing attention due to their low cost, high energy efficiency and simple preparation. However, there is a knowledge gap in the screening of hydrogel-based AWH materials in terms of structure-property relationships, which may increase the cost of trial and error in research and fabrication. In this study, we synthesised a variety of hydrogel-based AWH materials, characterized their physochemcial properties visualized the electrostatic potential of polymer chains, and ultimately established the structure-property-application relationships of polymeric AWH materials. Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) hydrogel is able to achieve an excellent water adsorption capacity of 0.62 g g-1 and a high water desorption efficiency of more than 90 % in relatively low-moderate humidity environments, which is regarded as one of the polymer materials with potential for future AWH applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA