Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34620713

RESUMEN

In the skin, tissue injury results in fibrosis in the form of scars composed of dense extracellular matrix deposited by fibroblasts. The therapeutic goal of regenerative wound healing has remained elusive, in part because principles of fibroblast programming and adaptive response to injury remain incompletely understood. Here, we present a multimodal -omics platform for the comprehensive study of cell populations in complex tissue, which has allowed us to characterize the cells involved in wound healing across both time and space. We employ a stented wound model that recapitulates human tissue repair kinetics and multiple Rainbow transgenic lines to precisely track fibroblast fate during the physiologic response to skin injury. Through integrated analysis of single cell chromatin landscapes and gene expression states, coupled with spatial transcriptomic profiling, we are able to impute fibroblast epigenomes with temporospatial resolution. This has allowed us to reveal potential mechanisms controlling fibroblast fate during migration, proliferation, and differentiation following skin injury, and thereby reexamine the canonical phases of wound healing. These findings have broad implications for the study of tissue repair in complex organ systems.


Asunto(s)
Cicatriz/patología , Fibroblastos/metabolismo , Fibrosis/patología , Piel/lesiones , Cicatrización de Heridas/fisiología , Animales , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Matriz Extracelular/metabolismo , Femenino , Mecanotransducción Celular/fisiología , Ratones , Ratones Endogámicos C57BL , Piel/metabolismo
2.
Neurosurg Focus ; 44(6): E16, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29852776

RESUMEN

OBJECTIVE Glioblastoma (GBM) is an aggressive brain malignancy with a short overall patient survival, yet there remains significant heterogeneity in outcomes. Although access to health care has previously been linked to impact on prognosis in several malignancies, this question remains incompletely answered in GBM. METHODS This study was a retrospective analysis of 354 newly diagnosed patients with GBM who underwent first resection at the authors' institution (2007-2015). RESULTS Of the 354 patients (median age 61 years, and 37.6% were females), 32 (9.0%) had no insurance, whereas 322 (91.0%) had insurance, of whom 131 (40.7%) had Medicare, 45 (14%) had Medicaid, and 146 (45.3%) had private insurance. On average, insured patients survived almost 2-fold longer (p < 0.0001) than those who were uninsured, whereas differences between specific insurance types did not influence survival. The adjusted hazard ratio (HR) for death was higher in uninsured patients (HR 2.27 [95% CI 1.49-3.33], p = 0.0003). Age, mean household income, tumor size at diagnosis, and extent of resection did not differ between insured and uninsured patients, but there was a disparity in primary care physician (PCP) status-none of the uninsured patients had PCPs, whereas 72% of insured patients had PCPs. Postoperative adjuvant treatment rates with temozolomide (TMZ) and radiation therapy (XRT) were significantly less in uninsured (TMZ in 56.3%, XRT in 56.3%) than in insured (TMZ in 75.2%, XRT in 79.2%; p = 0.02 and p = 0.003) patients. Insured patients receiving both agents had better prognosis than uninsured patients receiving the same treatment (9.1 vs 16.34 months; p = 0.025), suggesting that the survival effect in insured patients could only partly be explained by higher treatment rates. Moreover, having a PCP increased survival among the insured cohort (10.7 vs 16.1 months, HR 1.65 [95% CI 1.27-2.15]; p = 0.0001), which could be explained by significant differences in tumor diameter at initial diagnosis between patients with and without PCPs (4.3 vs 4.8 cm, p = 0.003), and a higher rate of clinical trial enrollment, suggesting a critical role of PCPs for a timelier diagnosis of GBM and proactive cancer care management. CONCLUSIONS Access to health care is a strong determinant of prognosis in newly diagnosed patients with GBM. Any type of insurance coverage and having a PCP improved prognosis in this patient cohort. Higher rates of treatment with TMZ plus XRT, clinical trial enrollment, fewer comorbidities, and early diagnosis may explain survival disparities. Lack of health insurance or a PCP are major challenges within the health care system, which, if improved upon, could favorably impact the prognosis of patients with GBM.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Glioblastoma/diagnóstico , Accesibilidad a los Servicios de Salud/tendencias , Disparidades en Atención de Salud/tendencias , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/economía , Neoplasias Encefálicas/terapia , Femenino , Glioblastoma/economía , Glioblastoma/terapia , Accesibilidad a los Servicios de Salud/economía , Disparidades en Atención de Salud/economía , Humanos , Masculino , Pacientes no Asegurados , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Adulto Joven
3.
Tissue Eng Part A ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38874979

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) represents one of the only cancers with an increasing incidence rate and is often associated with intra- and peri-tumoral scarring, referred to as desmoplasia. This scarring is highly heterogeneous in extracellular matrix (ECM) architecture and plays complex roles in both tumor biology and clinical outcomes that are not yet fully understood. Using hematoxylin and eosin (H&E), a routine histological stain utilized in existing clinical workflows, we quantified ECM architecture in 85 patient samples to assess relationships between desmoplastic architecture and clinical outcomes such as survival time and disease recurrence. By utilizing unsupervised machine learning to summarize a latent space across 147 local (e.g., fiber length, solidity) and global (e.g., fiber branching, porosity) H&E-based features, we identified a continuum of histological architectures that were associated with differences in both survival and recurrence. Furthermore, we mapped H&E architectures to a CO-Detection by indEXing (CODEX) reference atlas, revealing localized cell- and protein-based niches associated with outcome-positive versus outcome-negative scarring in the tumor microenvironment. Overall, our study utilizes standard H&E staining to uncover clinically relevant associations between desmoplastic organization and PDAC outcomes, offering a translatable pipeline to support prognostic decision-making and a blueprint of spatial-biological factors for modeling by tissue engineering methods.

4.
J Pediatr Rehabil Med ; 16(2): 415-423, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36120795

RESUMEN

Virtual reality (VR) technology has seen increasing use in physical rehabilitation and in the management of acute and chronic pain. Functional movement disorders (FMDs) are a source of disability with no known association to neurologic pathology, and patients are generally offered multidisciplinary treatment approaches to improve functional movement. However, patients who are not compliant with rehabilitation may have persistent FMD and long-term disability. Given VR's use in physical rehabilitation, it may serve as a useful adjunct for the management of FMD. Utilizing an application called MovementTM to create a playlist of targeted applications for the restoration of motor function and balance, this case study presents the application of VR as a tool to engage patients in physical therapy for the management of FMD. The VR games were selected to encourage movement while customization of levels within the games facilitated achievement of physical therapy goals. Physical rehabilitation aided by VR, when used in collaboration with a multidisciplinary care team, may be used to facilitate recovery from FMD.


Asunto(s)
Trastornos Motores , Humanos , Trastornos Motores/rehabilitación , Modalidades de Fisioterapia , Realidad Virtual
5.
bioRxiv ; 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36993266

RESUMEN

Tumor-associated neutrophil (TAN) effects on glioblastoma biology remain under-characterized. We show here that 'hybrid' neutrophils with dendritic features - including morphological complexity, expression of antigen presentation genes, and the ability to process exogenous peptide and stimulate MHCII-dependent T cell activation - accumulate intratumorally and suppress tumor growth in vivo . Trajectory analysis of patient TAN scRNA-seq identifies this phenotype as a polarization state which is distinct from canonical cytotoxic TANs and differentiates intratumorally from immature precursors absent in circulation. Rather, these hybrid-inducible immature neutrophils - which we identified in patient and murine glioblastomas - arise from local skull marrow. Through labeled skull flap transplantation and targeted ablation, we characterize calvarial marrow as a potent contributor of antitumoral myeloid APCs, including hybrid TANs and dendritic cells, which elicit T cell cytotoxicity and memory. As such, agents augmenting neutrophil egress from skull marrow - such as intracalvarial AMD3100 whose survival prolonging-effect in GBM we demonstrate - present therapeutic potential.

6.
Cell Rep Med ; 4(11): 101248, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865092

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is projected to become the second leading cause of cancer-related death. Hallmarks include desmoplasia with variable extracellular matrix (ECM) architecture and a complex microenvironment with spatially defined tumor, stromal, and immune populations. Nevertheless, the role of desmoplastic spatial organization in patient/tumor variability remains underexplored, which we elucidate using two technologies. First, we quantify ECM patterning in 437 patients, revealing architectures associated with disease-free and overall survival. Second, we spatially profile the cellular milieu of 78 specimens using codetection by indexing, identifying an axis of pro-inflammatory cell interactions predictive of poorer outcomes. We discover that clinical characteristics, including neoadjuvant chemotherapy status, tumor stage, and ECM architecture, correlate with differential stromal-immune organization, including fibroblast subtypes with distinct niches. Lastly, we define unified signatures that predict survival with areas under the receiver operating characteristic curve (AUCs) of 0.872-0.903, differentiating survivorship by 655 days. Overall, our findings establish matrix ultrastructural and cellular organizations of fibrosis linked to poorer outcomes.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Matriz Extracelular/patología , Microambiente Tumoral
7.
J Clin Invest ; 133(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36856115

RESUMEN

Cancer-associated fibroblasts (CAFs) were presumed absent in glioblastoma given the lack of brain fibroblasts. Serial trypsinization of glioblastoma specimens yielded cells with CAF morphology and single-cell transcriptomic profiles based on their lack of copy number variations (CNVs) and elevated individual cell CAF probability scores derived from the expression of 9 CAF markers and absence of 5 markers from non-CAF stromal cells sharing features with CAFs. Cells without CNVs and with high CAF probability scores were identified in single-cell RNA-Seq of 12 patient glioblastomas. Pseudotime reconstruction revealed that immature CAFs evolved into subtypes, with mature CAFs expressing actin alpha 2, smooth muscle (ACTA2). Spatial transcriptomics from 16 patient glioblastomas confirmed CAF proximity to mesenchymal glioblastoma stem cells (GSCs), endothelial cells, and M2 macrophages. CAFs were chemotactically attracted to GSCs, and CAFs enriched GSCs. We created a resource of inferred crosstalk by mapping expression of receptors to their cognate ligands, identifying PDGF and TGF-ß as mediators of GSC effects on CAFs and osteopontin and HGF as mediators of CAF-induced GSC enrichment. CAFs induced M2 macrophage polarization by producing the extra domain A (EDA) fibronectin variant that binds macrophage TLR4. Supplementing GSC-derived xenografts with CAFs enhanced in vivo tumor growth. These findings are among the first to identify glioblastoma CAFs and their GSC interactions, making them an intriguing target.


Asunto(s)
Fibroblastos Asociados al Cáncer , Glioblastoma , Humanos , Glioblastoma/genética , Transcriptoma , Variaciones en el Número de Copia de ADN , Células Endoteliales , Análisis de Secuencia de ARN
8.
Sci Rep ; 12(1): 1464, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35087132

RESUMEN

Glioblastoma (GBM) is the most common primary brain tumor with a median survival under two years. Using in silico and in vitro techniques, we demonstrate heterogeneous expression of CD97, a leukocyte adhesion marker, in human GBM. Beyond its previous demonstrated role in tumor invasion, we show that CD97 is also associated with upregulation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/Erk) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathways in GBM. While CD97 knockout decreased Akt activation, CD97 targeting did not alter MAPK/Erk activation, did not slow GBM cell proliferation in culture, and increased levels of glycolytic and oxidative phosphorylation metabolites. Treatment with a soluble CD97 inhibitor did not alter activation of the MAPK/Erk and PI3K/Akt pathways. Tumors with high CD97 expression were associated with immune microenvironment changes including increased naïve macrophages, regulatory T cells, and resting natural killer (NK) cells. These data suggest that, while CD97 expression is associated with conflicting effects on tumor cell proliferative and metabolic pathways that overall do not affect tumor cell proliferation, CD97 exerts pro-tumoral effects on the tumor immune microenvironment, which along with the pro-invasive effects of CD97 we previously demonstrated, provides impetus to continue exploring CD97 as a therapeutic target in GBM.


Asunto(s)
Antígenos CD/metabolismo , Neoplasias Encefálicas/inmunología , Glioblastoma/inmunología , Receptores Acoplados a Proteínas G/metabolismo , Microambiente Tumoral/inmunología , Activación Metabólica/inmunología , Antígenos CD/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/inmunología , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Glioblastoma/genética , Glioblastoma/patología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/inmunología , Metabolómica , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética
9.
Cancer Cell ; 40(11): 1392-1406.e7, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36270275

RESUMEN

Cancer-associated fibroblasts (CAFs) are integral to the solid tumor microenvironment. CAFs were once thought to be a relatively uniform population of matrix-producing cells, but single-cell RNA sequencing has revealed diverse CAF phenotypes. Here, we further probed CAF heterogeneity with a comprehensive multiomics approach. Using paired, same-cell chromatin accessibility and transcriptome analysis, we provided an integrated analysis of CAF subpopulations over a complex spatial transcriptomic and proteomic landscape to identify three superclusters: steady state-like (SSL), mechanoresponsive (MR), and immunomodulatory (IM) CAFs. These superclusters are recapitulated across multiple tissue types and species. Selective disruption of underlying mechanical force or immune checkpoint inhibition therapy results in shifts in CAF subpopulation distributions and affected tumor growth. As such, the balance among CAF superclusters may have considerable translational implications. Collectively, this research expands our understanding of CAF biology, identifying regulatory pathways in CAF differentiation and elucidating therapeutic targets in a species- and tumor-agnostic manner.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Humanos , Fibroblastos Asociados al Cáncer/patología , Proteómica , Microambiente Tumoral/genética , Fenotipo , Neoplasias/genética , Neoplasias/patología
10.
JCI Insight ; 6(12)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34003803

RESUMEN

Metastases cause 90% of human cancer deaths. The metastatic cascade involves local invasion, intravasation, extravasation, metastatic site colonization, and proliferation. Although individual mediators of these processes have been investigated, interactions between these mediators remain less well defined. We previously identified a complex between receptor tyrosine kinase c-Met and ß1 integrin in metastases. Using cell culture and in vivo assays, we found that c-Met/ß1 complex induction promoted intravasation and vessel wall adhesion in triple-negative breast cancer cells, but did not increase extravasation. These effects may have been driven by the ability of the c-Met/ß1 complex to increase mesenchymal and stem cell characteristics. Multiplex transcriptomic analysis revealed upregulated Wnt and hedgehog pathways after c-Met/ß1 complex induction. A ß1 integrin point mutation that prevented binding to c-Met reduced intravasation. OS2966, a therapeutic antibody disrupting c-Met/ß1 binding, decreased breast cancer cell invasion and mesenchymal gene expression. Bone-seeking breast cancer cells exhibited higher levels of c-Met/ß1 complex than parental controls and preferentially adhered to tissue-specific matrix. Patient bone metastases demonstrated higher c-Met/ß1 complex than brain metastases. Thus, the c-Met/ß1 complex drove intravasation of triple-negative breast cancer cells and preferential affinity for bone-specific matrix. Pharmacological targeting of the complex may have prevented metastases, particularly osseous metastases.


Asunto(s)
Neoplasias de la Mama , Integrina beta1 , Metástasis de la Neoplasia , Proteínas Proto-Oncogénicas c-met , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Ratones , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Transducción de Señal
11.
Cancer Res ; 80(7): 1498-1511, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32041837

RESUMEN

Glioblastoma (GBM) responses to bevacizumab are invariably transient with acquired resistance. We profiled paired patient specimens and bevacizumab-resistant xenograft models pre- and post-resistance toward the primary goal of identifying regulators whose targeting could prolong the therapeutic window, and the secondary goal of identifying biomarkers of therapeutic window closure. Bevacizumab-resistant patient specimens and xenografts exhibited decreased vessel density and increased hypoxia versus pre-resistance, suggesting that resistance occurs despite effective therapeutic devascularization. Microarray analysis revealed upregulated mesenchymal genes in resistant tumors correlating with bevacizumab treatment duration and causing three changes enabling resistant tumor growth in hypoxia. First, perivascular invasiveness along remaining blood vessels, which co-opts vessels in a VEGF-independent and neoangiogenesis-independent manner, was upregulated in novel biomimetic 3D bioengineered platforms modeling the bevacizumab-resistant microenvironment. Second, tumor-initiating stem cells housed in the perivascular niche close to remaining blood vessels were enriched. Third, metabolic reprogramming assessed through real-time bioenergetic measurement and metabolomics upregulated glycolysis and suppressed oxidative phosphorylation. Single-cell sequencing of bevacizumab-resistant patient GBMs confirmed upregulated mesenchymal genes, particularly glycoprotein YKL-40 and transcription factor ZEB1, in later clones, implicating these changes as treatment-induced. Serum YKL-40 was elevated in bevacizumab-resistant versus bevacizumab-naïve patients. CRISPR and pharmacologic targeting of ZEB1 with honokiol reversed the mesenchymal gene expression and associated stem cell, invasion, and metabolic changes defining resistance. Honokiol caused greater cell death in bevacizumab-resistant than bevacizumab-responsive tumor cells, with surviving cells losing mesenchymal morphology. Employing YKL-40 as a resistance biomarker and ZEB1 as a target to prevent resistance could fulfill the promise of antiangiogenic therapy. SIGNIFICANCE: Bevacizumab resistance in GBM is associated with mesenchymal/glycolytic shifts involving YKL-40 and ZEB1. Targeting ZEB1 reduces bevacizumab-resistant GBM phenotypes. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/7/1498/F1.large.jpg.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Adulto , Anciano , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/uso terapéutico , Encéfalo/irrigación sanguínea , Encéfalo/patología , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Hipoxia de la Célula/efectos de los fármacos , Línea Celular Tumoral , Proteína 1 Similar a Quitinasa-3/metabolismo , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/irrigación sanguínea , Glioblastoma/genética , Glioblastoma/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Lignanos/farmacología , Lignanos/uso terapéutico , Masculino , Persona de Mediana Edad , Invasividad Neoplásica/patología , Invasividad Neoplásica/prevención & control , Células Madre Neoplásicas/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Microambiente Tumoral/efectos de los fármacos , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/antagonistas & inhibidores
12.
Semin Oncol ; 46(3): 284-290, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31488338

RESUMEN

Initial studies on cancer primarily focused on malignant cells themselves. The overarching narrative of cancer revolved around unchecked and rapidly proliferating cells. Special attention was given to the molecular, genetic, and metabolic profiles of isolated cancer cells in hopes of elucidating a critical factor in malignancy. However, the scope of cancer research has broadened over the past few decades to include the local environment around cancer. It has become increasingly apparent that the immune cells, vascular networks, and the extracellular matrix all have a part in cancer progression. The impact of the extracellular matrix is particularly fascinating and key stromal changes have been identified in various cancers. Pioneering work studying laminin and hyaluronate has shown that these molecules have vital roles in cancer progression. More recently, fibronectin has been included as an extracellular driver of malignancy. Fibronectin is thought to play a considerable, albeit poorly understood, role in cancer pathogenesis. In this review, we present fundamental studies that have investigated the impact of fibronectin in cancer. As an abundant component of the extracellular matrix, understanding the effect of this molecule has the potential to elucidate cancer biology.


Asunto(s)
Fibronectinas/genética , Oncología Médica/tendencias , Neoplasias/genética , Progresión de la Enfermedad , Matriz Extracelular/genética , Humanos , Laminina/genética , Neoplasias/metabolismo , Neoplasias/patología
13.
Neurosurgery ; 85(6): 793-800, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30445646

RESUMEN

BACKGROUND: Resection may be appropriate for select patients with recurrent glioblastoma. The incidence of histopathological findings related to prior treatment and their prognostic implications are incompletely characterized. OBJECTIVE: To quantify the incidence and survival outcomes associated with treatment effect at resection of recurrent glioblastoma (GBM). METHODS: Patients who underwent resection for recurrent GBM were retrospectively reviewed, and pathology, treatment history, and survival data were collected. Treatment effect was defined as any component of treatment-related changes on pathology. RESULTS: In total, 110 patients underwent 146 reoperations. Median age at first reoperation was 57.2 yr and overall survival from reoperation was 10.8 mo. Treatment effect of any kind was noted in 81 of 146 reoperations (55%). Increased treatment effect was observed closer to radiotherapy; by quartile of time from radiotherapy, the rates of treatment effect were 77.8%, 55.6%, 40.7%, and 44.4% (P = .028). Treatment effect was associated with earlier reoperation (8.9 vs 13.8 mo after radiotherapy, P = .003), and the presence of treatment effect did not impact survival from primary surgery (25.4 vs 24.3 mo, P = .084). Patients treated with bevacizumab prior to reoperation were less likely to have treatment effect (20% vs 65%, P < .001). CONCLUSION: Histopathological treatment-related changes are evident in a majority of patients undergoing resection for recurrent glioblastoma. There was no association of treatment effect with overall survival from primary surgery.


Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Glioblastoma/patología , Glioblastoma/cirugía , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/cirugía , Adulto , Anciano , Neoplasias Encefálicas/epidemiología , Femenino , Glioblastoma/epidemiología , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/epidemiología , Reoperación/tendencias , Estudios Retrospectivos , Resultado del Tratamiento , Adulto Joven
14.
J Neurosurg ; : 1-11, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31226687

RESUMEN

OBJECTIVE: Glioblastoma (GBM) carries a high economic burden for patients and caregivers, much of which is associated with initial surgery. The authors investigated the impact of insurance status on the inpatient hospital costs of surgery for patients with GBM. METHODS: The authors conducted a retrospective review of patients with GBM (2010-2015) undergoing their first resection at the University of California, San Francisco, and corresponding inpatient hospital costs. RESULTS: Of 227 patients with GBM (median age 62 years, 37.9% females), 31 (13.7%) had Medicaid, 94 (41.4%) had Medicare, and 102 (44.9%) had private insurance. Medicaid patients had 30% higher overall hospital costs for surgery compared to non-Medicaid patients ($50,285 vs $38,779, p = 0.01). Medicaid patients had higher intensive care unit (ICU; p < 0.01), operating room (p < 0.03), imaging (p < 0.001), room and board (p < 0001), and pharmacy (p < 0.02) costs versus non-Medicaid patients. Medicaid patients had significantly longer overall and ICU lengths of stay (6.9 and 2.6 days) versus Medicare (4.0 and 1.5 days) and privately insured patients (3.9 and 1.8 days, p < 0.01). Medicaid patients had similar comorbidity rates to Medicare patients (67.8% vs 68.1%), and both groups had higher comorbidity rates than privately insured patients (37.3%, p < 0.0001). Only 67.7% of Medicaid patients had primary care providers (PCPs) versus 91.5% of Medicare and 86.3% of privately insured patients (p = 0.009) at the time of presentation. Tumor diameter at diagnosis was largest for Medicaid (4.7 cm) versus Medicare (4.1 cm) and privately insured patients (4.2 cm, p = 0.03). Preoperative (70 vs 90, p = 0.02) and postoperative (80 vs 90, p = 0.03) Karnofsky Performance Scale (KPS) scores were lowest for Medicaid versus non-Medicaid patients, while in subgroup analysis, postoperative KPS score was lowest for Medicaid patients (80, vs 90 for Medicare and 90 for private insurance; p = 0.03). Medicaid patients had significantly shorter median overall survival (10.7 months vs 12.8 months for Medicare and 15.8 months for private insurance; p = 0.02). Quality-adjusted life year (QALY) scores were 0.66 and 1.05 for Medicaid and non-Medicaid patients, respectively (p = 0.036). The incremental cost per QALY was $29,963 lower for the non-Medicaid cohort. CONCLUSIONS: Patients with GBMs and Medicaid have higher surgical costs, longer lengths of stay, poorer survival, and lower QALY scores. This study indicates that these patients lack PCPs, have more comorbidities, and present later in the disease course with larger tumors; these factors may drive the poorer postoperative function and greater consumption of hospital resources that were identified. Given limited resources and rising healthcare costs, factors such as access to PCPs, equitable adjuvant therapy, and early screening/diagnosis of disease need to be improved in order to improve prognosis and reduce hospital costs for patients with GBM.

15.
Sci Rep ; 9(1): 15791, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31673001

RESUMEN

Fluorescent proteins are used extensively in transgenic animal models to label and study specific cell and tissue types. Expression of these proteins can be imaged and analyzed using fluorescent and confocal microscopy. Conventional confocal microscopes cannot penetrate through tissue more than 4-6 µm thick. Tissue clearing procedures overcome this challenge by rendering thick specimens into translucent tissue. However, most tissue clearing techniques do not satisfactorily preserve expression of endogenous fluorophores. Using simple adjustments to the BABB (Benzoic Acid Benzyl Benzoate) clearing methodology, preservation of fluorophore expression can be maintained. Modified BABB tissue clearing is a reliable technique to clear skin and soft tissue specimens for the study of dermal biology, wound healing and fibrotic pathologies.


Asunto(s)
Benzoatos/química , Colorantes Fluorescentes/química , Imagenología Tridimensional , Piel , Animales , Ratones , Ratones Transgénicos , Microscopía Confocal , Piel/citología , Piel/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA