Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 148(3)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33462115

RESUMEN

Fine-tuned gene expression is crucial for neurodevelopment. The gene expression program is tightly controlled at different levels, including RNA decay. N6-methyladenosine (m6A) methylation-mediated degradation of RNA is essential for brain development. However, m6A methylation impacts not only RNA stability, but also other RNA metabolism processes. How RNA decay contributes to brain development is largely unknown. Here, we show that Exosc10, a RNA exonuclease subunit of the RNA exosome complex, is indispensable for forebrain development. We report that cortical cells undergo overt apoptosis, culminating in cortical agenesis upon conditional deletion of Exosc10 in mouse cortex. Mechanistically, Exosc10 directly binds and degrades transcripts of the P53 signaling-related genes, such as Aen and Bbc3. Overall, our findings suggest a crucial role for Exosc10 in suppressing the P53 pathway, in which the rapid turnover of the apoptosis effectors Aen and Bbc3 mRNAs is essential for cell survival and normal cortical histogenesis.


Asunto(s)
Supervivencia Celular/fisiología , Exosomas/genética , Exosomas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Prosencéfalo/crecimiento & desarrollo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis , Biología Computacional , Exorribonucleasas/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Prosencéfalo/patología , ARN/metabolismo , Estabilidad del ARN , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor
2.
Eur J Neurol ; 31(4): e16205, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38205888

RESUMEN

BACKGROUND AND PURPOSE: Chronic inflammatory demyelinating polyneuropathy (CIDP) is an autoimmune disease with humoral and cellular autoimmunity causing demyelination of peripheral nerves, commonly treated with intravenous immunoglobulins (IVIg). The neonatal Fc receptor (FcRn), encoded by the FCGRT gene, prevents the degradation of immunoglobulin G (IgG) by recycling circulating IgG. A variable number of tandem repeat (VNTR) polymorphism in the promoter region of the FCGRT gene is associated with different expression levels of mRNA and protein. Thus, patients with genotypes associated with relatively low FcRn expression may show a poorer treatment response to IVIg due to increased IVIg degradation. METHODS: VNTR genotypes were analyzed in 144 patients with CIDP. Patients' clinical data, including neurological scores and treatment data, were collected as part of the Immune-Mediated Neuropathies Biobank registry. RESULTS: Most patients (n = 124, 86%) were VNTR 3/3 homozygotes, and 20 patients (14%) were VNTR 2/3 heterozygotes. Both VNTR 3/3 and VNTR 2/3 genotype groups showed no difference in clinical disability and immunoglobulin dosage. However, patients with a VNTR 2 allele were more likely to receive subcutaneous immunoglobulins (SCIg) than patients homozygous for the VNTR 3 allele (25% vs. 9.7%, p = 0.02) and were more likely to receive second-line therapy (75% vs. 54%, p = 0.05). CONCLUSIONS: The VNTR 2/3 genotype is associated with the administration of SCIg, possibly reflecting a greater benefit from SCIg due to more constant immunoglobulin levels without lower IVIg levels between the treatment circles. Also, the greater need for second-line treatment in VNTR 2/3 patients could be an indirect sign of a lower response to immunoglobulins.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante , Receptores Fc , Recién Nacido , Humanos , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/tratamiento farmacológico , Inmunoglobulinas Intravenosas/uso terapéutico , Repeticiones de Minisatélite , Inmunoglobulina G , Regiones Promotoras Genéticas
3.
Hum Brain Mapp ; 44(8): 3359-3376, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37013679

RESUMEN

Intelligence is highly heritable. Genome-wide association studies (GWAS) have shown that thousands of alleles contribute to variation in intelligence with small effect sizes. Polygenic scores (PGS), which combine these effects into one genetic summary measure, are increasingly used to investigate polygenic effects in independent samples. Whereas PGS explain a considerable amount of variance in intelligence, it is largely unknown how brain structure and function mediate this relationship. Here, we show that individuals with higher PGS for educational attainment and intelligence had higher scores on cognitive tests, larger surface area, and more efficient fiber connectivity derived by graph theory. Fiber network efficiency as well as the surface of brain areas partly located in parieto-frontal regions were found to mediate the relationship between PGS and cognitive performance. These findings are a crucial step forward in decoding the neurogenetic underpinnings of intelligence, as they identify specific regional networks that link polygenic predisposition to intelligence.


Asunto(s)
Encéfalo , Estudio de Asociación del Genoma Completo , Humanos , Encéfalo/diagnóstico por imagen , Inteligencia/genética , Herencia Multifactorial , Escolaridad
4.
Brain ; 145(11): 3968-3984, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-35015830

RESUMEN

DYT6 dystonia is caused by mutations in the transcription factor THAP1. THAP1 knock-out or knock-in mouse models revealed complex gene expression changes, which are potentially responsible for the pathogenesis of DYT6 dystonia. However, how THAP1 mutations lead to these gene expression alterations and whether the gene expression changes are also reflected in the brain of THAP1 patients are still unclear. In this study we used epigenetic and transcriptomic approaches combined with multiple model systems [THAP1 patients' frontal cortex, THAP1 patients' induced pluripotent stem cell (iPSC)-derived midbrain dopaminergic neurons, THAP1 heterozygous knock-out rat model, and THAP1 heterozygous knock-out SH-SY5Y cell lines] to uncover a novel function of THAP1 and the potential pathogenesis of DYT6 dystonia. We observed that THAP1 targeted only a minority of differentially expressed genes caused by its mutation. THAP1 mutations lead to dysregulation of genes mainly through regulation of SP1 family members, SP1 and SP4, in a cell type dependent manner. Comparing global differentially expressed genes detected in THAP1 patients' iPSC-derived midbrain dopaminergic neurons and THAP1 heterozygous knock-out rat striatum, we observed many common dysregulated genes and 61 of them were involved in dystonic syndrome-related pathways, like synaptic transmission, nervous system development, and locomotor behaviour. Further behavioural and electrophysiological studies confirmed the involvement of these pathways in THAP1 knock-out rats. Taken together, our study characterized the function of THAP1 and contributes to the understanding of the pathogenesis of primary dystonia in humans and rats. As SP1 family members were dysregulated in some neurodegenerative diseases, our data may link THAP1 dystonia to multiple neurological diseases and may thus provide common treatment targets.


Asunto(s)
Distonía , Trastornos Distónicos , Neuroblastoma , Humanos , Ratones , Animales , Ratas , Distonía/genética , Proteínas Nucleares/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Trastornos Distónicos/genética , Mutación/genética , Factor de Transcripción Sp1/genética
5.
Cell Mol Life Sci ; 79(5): 262, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35482253

RESUMEN

Spinocerebellar ataxia type 17 (SCA17) is a neurodegenerative disease caused by a polyglutamine-encoding trinucleotide repeat expansion in the gene of transcription factor TATA box-binding protein (TBP). While its underlying pathomechanism is elusive, polyglutamine-expanded TBP fragments of unknown origin mediate the mutant protein's toxicity. Calcium-dependent calpain proteases are protagonists in neurodegenerative disorders. Here, we demonstrate that calpains cleave TBP, and emerging C-terminal fragments mislocalize to the cytoplasm. SCA17 cell and rat models exhibited calpain overactivation, leading to excessive fragmentation and depletion of neuronal proteins in vivo. Transcriptome analysis of SCA17 cells revealed synaptogenesis and calcium signaling perturbations, indicating the potential cause of elevated calpain activity. Pharmacological or genetic calpain inhibition reduced TBP cleavage and aggregation, consequently improving cell viability. Our work underlines the general significance of calpains and their activating pathways in neurodegenerative disorders and presents these proteases as novel players in the molecular pathogenesis of SCA17.


Asunto(s)
Calpaína , Ataxias Espinocerebelosas , Animales , Calpaína/genética , Calpaína/metabolismo , Neuronas/metabolismo , Ratas , Ataxias Espinocerebelosas/metabolismo , Expansión de Repetición de Trinucleótido
6.
J Infect Dis ; 226(9): 1608-1615, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35512326

RESUMEN

BACKGROUND: The contribution of droplet-contaminated surfaces for virus transmission has been discussed controversially in the context of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic. More importantly, the risk of fomite-based transmission has not been systematically addressed. Therefore, the aim of this study was to evaluate whether confirmed hospitalized coronavirus disease 2019 (COVID-19) patients can contaminate stainless steel carriers by coughing or intensive moistening with saliva and to assess the risk of SARS-CoV-2 transmission upon detection of viral loads and infectious virus in cell culture. METHODS: We initiated a single-center observational study including 15 COVID-19 patients with a high baseline viral load (cycle threshold value ≤25). We documented clinical and laboratory parameters and used patient samples to perform virus culture, quantitative polymerase chain reaction, and virus sequencing. RESULTS: Nasopharyngeal and oropharyngeal swabs of all patients were positive for viral ribonucleic acid on the day of the study. Infectious SARS-CoV-2 could be isolated from 6 patient swabs (46.2%). After coughing, no infectious virus could be recovered, however, intensive moistening with saliva resulted in successful viral recovery from steel carriers of 5 patients (38.5%). CONCLUSIONS: Transmission of infectious SARS-CoV-2 via fomites is possible upon extensive moistening, but it is unlikely to occur in real-life scenarios and from droplet-contaminated fomites.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , SARS-CoV-2 , Fómites , Pandemias , Carga Viral
7.
Neurobiol Dis ; 171: 105725, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35427742

RESUMEN

While Huntington disease (HD) is caused solely by a polyglutamine expansion in the huntingtin gene, environmental factors can influence HD onset and progression. Here, we review studies linking environment and HD in both humans and animal models. In HD patients, we find that: (i) an active lifestyle associates with both a delayed age at onset of HD and a decreased severity of symptoms, (ii) applying physical exercise and behavioral therapies in small cohorts of HD subjects indicate promising effects on the HD symptomatology, (iii) Mediterranean diet correlates with lower motor impairment, and treatments based on omega-3 fatty acids improve motor function , whereas (iv) increased cortisol levels associate with specific HD symptoms. In animal models, in line with the evidence in humans, physical exercise, environmental enrichment and different types of dietary intervention ameliorate or delay several HD phenotypes. In contrast, stress appears to be involved in the HD pathogenesis, and HD mice present increased stress sensitivity. Importantly, studies in animal models have uncovered several molecular factors mediating environmental effects on HD associated neuropathology. However, the influence of the environment on several key HD mechanisms as well as the underlying regulatory factors remain to be explored. Given the role of epigenetic factors and modifications in the interplay between environment and genes, the exploration of their role as mechanisms underlying the environmental action in HD is a promising avenue for both our fundamental understanding of the disease and as a potential for therapy.


Asunto(s)
Ambiente , Enfermedad de Huntington , Animales , Modelos Animales de Enfermedad , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Enfermedad de Huntington/terapia , Ratones , Ratones Transgénicos
8.
Int J Cancer ; 150(12): 1998-2011, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35064925

RESUMEN

Cytogenetic diagnostics play a crucial role in risk stratification and classification of myeloid malignancies such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), thus influencing treatment decisions. Optical genome mapping (OGM) is a novel whole genome method for the detection of cytogenetic abnormalities. Our study assessed the applicability and practicality of OGM as diagnostic tool in AML and MDS patients. In total, 27 patients with AML or MDS underwent routine diagnostics including classical karyotyping and fluorescence in situ hybridization (FISH) or real-time PCR analysis wherever indicated as well as OGM following a recently established workflow. Methods were compared regarding concordance and content of information. In 93%, OGM was concordant to classical karyotyping and a total of 61 additional variants in a predefined myeloid gene-set could be detected. In 67% of samples the karyotype could be redefined by OGM. OGM offers a whole genome approach to cytogenetic diagnostics in AML and MDS with a high concordance to classical cytogenetics. The method has the potential to enter routine diagnostics as a gold standard for cytogenetic diagnostics widely superseding FISH. Furthermore, OGM can serve as a tool to identify genetic regions of interest and future research regarding tumor biology.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Mapeo Cromosómico/métodos , Análisis Citogenético/métodos , Citogenética , Humanos , Hibridación Fluorescente in Situ/métodos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética , Pronóstico
9.
Int J Cancer ; 150(1): 56-66, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34469588

RESUMEN

Lynch syndrome (LS), Lynch-like syndrome (LLS) and familial colorectal cancer type X (FCCX) are different entities of familial cancer predisposition leading to an increased risk of colorectal cancer (CRC). The aim of this prospective study was to characterise and to compare the risks for adenoma and CRC in these three risk groups. Data was taken from the registry of the German Consortium for Familial Intestinal Cancer. Patients were prospectively followed up in an intensified colonoscopic surveillance programme that included annual examinations. Cumulative risks for adenoma and CRC were calculated separately for LS, LLS and FCCX, and then for males and females. Multivariate Cox regression was used to analyse the independent contributions of risk group, mismatch repair gene (within LS), sex and previous adenoma. The study population comprised 1448 individuals (103 FCCX, 481 LLS and 864 LS). The risks were similar for colorectal adenomas, but different for first and metachronous CRC between the three risk groups. CRC risk was highest in LS, followed by LLS and lowest in FCCX. Male sex and a prevalent adenoma in the index colonoscopy were associated with a higher risk for incident adenoma and CRC. In patients with LS, CRC risks were particularly higher in female MSH2 than MLH1 carriers. Our study may support the development of risk-adapted surveillance policies in LS, LLS and FCCX.


Asunto(s)
Adenoma/patología , Biomarcadores de Tumor/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/clasificación , Neoplasias Colorrectales Hereditarias sin Poliposis/complicaciones , Neoplasias Colorrectales/patología , Adenoma/etiología , Adenoma/metabolismo , Adulto , Anciano , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Homólogo 1 de la Proteína MutL/genética , Proteína 2 Homóloga a MutS/genética , Mutación , Pronóstico , Estudios Prospectivos , Factores de Riesgo
10.
Hum Mol Genet ; 29(15): 2551-2567, 2020 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-32761094

RESUMEN

The expanded HTT CAG repeat causing Huntington's disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a pathological process that ultimately claims vulnerable cells. To gain insight into somatic expansion in humans, we performed comprehensive quantitative analyses of CAG expansion in ~50 central nervous system (CNS) and peripheral postmortem tissues from seven adult-onset and one juvenile-onset HD individual. We also assessed ATXN1 CAG repeat expansion in brain regions of an individual with a neurologically and pathologically distinct repeat expansion disorder, spinocerebellar ataxia type 1 (SCA1). Our findings reveal similar profiles of tissue instability in all HD individuals, which, notably, were also apparent in the SCA1 individual. CAG expansion was observed in all tissues, but to different degrees, with multiple cortical regions and neostriatum tending to have the greatest instability in the CNS, and liver in the periphery. These patterns indicate different propensities for CAG expansion contributed by disease locus-independent trans-factors and demonstrate that expansion per se is not sufficient to cause cell type or disease-specific pathology. Rather, pathology may reflect distinct toxic processes triggered by different repeat lengths across cell types and diseases. We also find that the HTT CAG length-dependent expansion propensity of an individual is reflected in all tissues and in cerebrospinal fluid. Our data indicate that peripheral cells may be a useful source to measure CAG expansion in biomarker assays for therapeutic efforts, prompting efforts to dissect underlying mechanisms of expansion that may differ between the brain and periphery.


Asunto(s)
Enfermedad de Huntington/genética , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido/genética , Repeticiones de Trinucleótidos/genética , Adulto , Anciano , Autopsia , Sistema Nervioso Central/patología , Niño , Femenino , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/patología , Masculino , Persona de Mediana Edad , Neostriado/diagnóstico por imagen , Neostriado/metabolismo , Neostriado/patología , Ataxias Espinocerebelosas/diagnóstico por imagen , Ataxias Espinocerebelosas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA